Рівномірний закон. Оскільки математичне сподівання для цього випадку дорівнює нулеві, то обидва центральні моменти збігаються з початковими моментами, тобто
Експоненційний закон. Перший центральний момент за означенням дорівнює нулеві. Другий центральний момент (дисперсія), згідно з (22), визначаємо за формулою:
При розв'язуванні багатьох практичних завдань доводиться додавати, віднімати та перемножувати випадкові сигнали. При цьому числові характеристики результуючих сигналів достатньо просто визначають через числові характеристики первинних сигналів.
Наприклад, якщо
Подані співвідношення можна узагальнити на випадок більшої кількості випадкових сигналів. У загальному випадку числові характеристики одновимірних розподілів залежать від часу. Це зумовлюється часовою залежністю функції розподілу
Рисунок 5 – Варіанти реалізацій випадкового процесу із змінними в часі числовими характеристиками.