Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.
12. Массочные ПЗУ. Программируемые ПЗУ. Перепрограмируемые ПЗУ.
К масочным относятся ПЗУ, информация в которые записывается непосредственно в процессе их изготовления. Само название данного подкласса устройств связано с технологическим процессом их изготовления. Известно, что нанесение «рисунка» структуры на исходный полупроводниковый материал выполняется при помощи нескольких последовательных циклов фотолитографии (проецирование рисунка через фотошаблон называемый маской) При этом отдельные элементы формируемых полупроводниковых приборов выполняются с использованием различных масок, например, коллекторные и эмиттерные переходы биполярных или выводы стока и истока полевых транзисторов.
Первоначально изготавливаются все фотошаблоны, обеспечивающие соединение всех ША с ШД. В этом случае по всем адресам из ПЗУ считывается одинаковый сигнал, например лог. 1. Далее один из шаблонов заменяют другим, в котором отсутствуют некоторые области приборов (например, коллекторные переходы транзисторов), расположенные согласно таблице истинности между шинами в тех местах, где соединение должно отсутствовать. Данный метод позволяет для изготовления ПЗУ с различной информацией заменять только один из фотошаблонов, что существенно ускоряет и удешевляет процесс производства.
Как следует из описания, масочные ПЗУ имеют простую и регулярную структуру, что предполагает выполнение ИС, способных хранить большие объемы информации.
При производстве небольших партий ПЗУ изготовление по заказу потребителя даже одной маски может оказаться слишком дорогостоящим, а время выполнения заказа – слишком большим. Поэтому многие предприятия выпускают ПЗУ, программируемые пользователем. В ПЗУ этого типа потребитель может сам записать требуемую ему информацию. Существует много видов ПЗУ, программируемых пользователем. ПЗУ, в которое информацию можно записать только однократно (навсегда), называется программируемым ПЗУ (ППЗУ).
Перепрограммируемое ПЗУ в процессе функционирования цифрового устройства используется как ПЗУ. Оно отличается от ПЗУ тем, что допускает обновление однажды занесенной информации, т.е. в нем предусматривается режим записи. Однако в отличие от ОЗУ запись информации требует отключения ППЗУ от цифрового устройства, производится с использованием специальных предназначенных для записи устройств (программаторов) и занимает длительное время, достигающее десятков минут. Перепрограммируемые ПЗУ дороже ПЗУ, и их применяют в процессе отладки программы, после чего их можно заменить более дешевым ПЗУ.
13.Внешние запоминающие устройства МП систем. Гибкие магнитные диски. Жесткие диски. Оптические носители информации. Магнитооптические диски. (см. 9 и 10)
14.Переферийные устройства МПС.
Сама передача данных между ЭВМ и периферийными устройствами происходит быстро, но обеспечение правильной передачи занимает намного больше времени. Типичная операция ввода происходит следующим образом:
1. Периферийное устройство сигнализирует ЦП о том, что имеются новые данные. Устройство ввода-вывода должно соответствующим образом сформировать сигнал и держать его до тех пор. пока ЦП его не примет;
2. Периферийное устройство посылает данные в ЦП. Устройство ввода-вывода должно хранить их до тех пор, пока ЦП не будет готов их считать;
3. Центральный процессор считывает данные. Устройство ввода-вывода должно иметь блок дешифрирования, который выбирает определенную часть УВВ (или порт). Считывание данных должно снять сигнал, свидетельствующий о том, что данные имеются; результатом этого может быть также подтверждение, посланное периферийному устройству, о том что оно может посылать новые данные.
Операции вывода во многом похожи на операции ввода. Периферийное устройство оповещает ЦП, что оно готово принять данные. После этого ЦП направляет данные вместе с сигналом (стробом), который указывает периферийному устройству. что данные имеются. Устройство ввода-вывода формирует соответствующим образом данные и сигналы управления и сохраняет данные в течение времени, необходимого для их использования периферийным устройством. Данные вывода должны храниться намного дольше, чем данные ввода. так как механические устройства, отображающие их, реагируют намного медленнее, чем ЭВМ.
Устройство ввода-вывода должно выполнять множество задач простого интерфейса. Оно должно придать сигналам подходящий формат как для управляющего, так и для периферийного устройства. Центральному процессору требуются сигналы с определенными уровнями напряжения. периферийные устройства могут использовать много различных типов сигналов, включая непрерывные (аналоговые) сигналы различного тока и напряжения. Для сигналов, идущих на большие расстояния или работающих на большие нагрузки, требуются усилители.
Устройство ввода-вывода может также выполнять некоторые функции, которые выполняет ЦП. Эти функции включают в себя преобразование данных из последовательного кода в параллельный, включение или исключение специальных символов, отмечающих начало или конец передачи данных. а также преобразование кодов обнаружения ошибок таких как проверка на четность.
Устройство ввода-вывода может выполнить эти задачи аппаратными средствами быстрее, чем ЦП может выполнить их программными методами. Устройство ввода-вывода ЭВМ может быть программируемым и даже содержать процессор для реализации его некоторых задач.
Адресная шина передает адрес порта ввода или вывода, который нужен для использования ЦП. Сигнал ввода-вывода определяет направление передачи. По шине данных осуществляется передача информации между устройствами. Шина управления передает сигналы, указывающие, что данные готовы и что передача завершена. Что касается шин между ЦП и ЗУ, то некоторые из них могут быть одними и теми же, но разделенными во времени для выполнения различных операций.
Более того, шины могут соединять ЦП как с памятью, так и с УВВ. Одна линия управления может определять назначение блоков. Действительно, некоторые ЭВМ (например, Motorola 6800) полностью совмещают по адресному полю память и УВВ; они обращаются к устройствам ввода или вывода так же, как к ячейкам памяти.
Современные ЭВМ имеют прямую связь межу памятью и УВВ, что позволяет осуществлять передачу данных к периферийным устройствам и обратно без участия ЦП. Этот метод передачи данных называется прямым доступом к памяти (ПДП). Преимуществом ПДП является то, что скорость передачи обеспечивается только временем доступа к памяти (обычно менее 1 мкс). Для передачи данных через ЦП требуется несколько команд, и на это уходит в 10-20 раз больше времени. Прямой доступ к памяти применяется с быстродействующими периферийными устройствами, такими как магнитные диски, быстродействующие линии связи или дисплеи.
15. Понятие архитектуры и основные элементы
Микропроцессор (МП) - это программно управляемое устройство, которое предназначено для обработки цифровой информации и управления процессом этой обработки и выполнено в виде одной или нескольких больших интегральных схем (БИС).
Понятие большая интегральная схема в настоящее время четко не определено. Ранее считалось, что к этому классу следует относить микросхемы, содержащие более 1000 элементов на кристалле. И действительно, в эти параметры укладывались первые микропроцессоры. Например, 4-разрядная процессорная секция микропроцессорного комплекта К584, выпускавшегося в конце 1970-х годов, содержала около 1500 элементов. Сейчас, когда микропроцессоры содержат десятки миллионов транзисторов и их количество непрерывно увеличивается, под БИС будем понимать функционально сложную интегральную схему.
Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, основу которой составляет микропроцессор.