6. Доступ к щитам питания и другим элементам электрооборудования здания должен быть ограничен соответствующими документами и инструкциями, а также техническими мероприятиями. Текущее обслуживание электрооборудования и ремонтные работы должны проводиться под контролем сотрудников режимной службы. Заметим, что включение последовательных ТС НСВ в разрыв кабеля при доступе к щиту питания легко камуфлируется. Например, кабель от ТС НСВ подключается к клеммам предохранителя в щите питания. Предохранитель вынимается, при этом ТС НСВ оказывается включенным, а электропитание при включении не прерывается, после этого контакты предохранителя изолируются, и он для маскировки устанавливается на свое штатное место. После совершения нападения все восстанавливается в обратном порядке.
7. Все электрооборудование (в том числе и бытового назначения) должно тщательно проверяться. Чаще всего для маскировки ТС НСВ используются пылесосы, кондиционеры, микроволновые печи (в последних уже содержатся высоковольтные конденсаторы, зарядное устройство и другие узлы, позволяющие использовать их в качестве элементов ТС НСВ). Внимание режимных служб должны привлекать оставленные строителями или ремонтниками сварочные трансформаторы и подобное оборудование, особенно если все это оставлено подключенным к сети питания.
8. Желательно организовать на объекте круглосуточный мониторинг сети электропитания с помощью соответствующих регистрирующих приборов и одновременную регистрацию в журнале всех сбоев и повреждений оборудования с обязательной фиксацией времени возникновения сбоев и характера дефектов. Время возникновения сбоев и дефектов накладывается на распечатку параметров напряжения питающей сети. При выявлении скачков напряжения можно своевременно установить факт НСВ по сети питания, в том числе и с помощью ТС с параллельным подключением, которые не выявляются импульсным зондированием сети электропитания. Спектр регистрирующих приборов простирается от простого счетчика импульсов до сложных комплексов на базе ПЭВМ.
9. ТС НСВ с емкостным накопителем имеют демаскирующие акустические признаки — при разрядке конденсаторы генерируют акустический импульс. Это обстоятельство можно использовать для поиска ТС НСВ такого типа. Для простейших ТС, работающих периодично, это возможно, а для ТС со случайным законом генерирования импульсов поиск по акустическим шумам затруднен.
10. При закупках оборудования АС необходимо обращать внимание на степень его защиты от импульсных помех. Необходимо, чтобы оборудование имело класс устойчивости к импульсным перенапряжениям не ниже A по ITTT Standard 587-1980 и аналогичным западным стандартам (помеха — 0,5 мкс, 100 кГц, 6 кВ, 200 А, 1,6 Дж), для наиболее важного оборудования — класс B (помехи 0,5 мкс — 100 кГц, 6 кВ, 500 А, 4 Дж; 1,2/50 мкс — 6 кВ; 8/20 мкс — 3 кА, 80 Дж). Оборудование, подключаемое к витым парам в сети большой протяженности, должно также иметь надлежащую защиту по информационным каналам. Наибольшего внимания заслуживают модемы, работающие на внешние проводные или кабельные линии связи. Следует обращать особое внимание на способность модемов противостоять мощным импульсным помехам. Более половины моделей модемов в варианте поставки “для России” не имеют схем защиты телефонных линий, хотя вся необходимая для установки защитных устройств разводка на печатных платах присутствует. Поэтому не только при НСВ, но и при обычной эксплуатации такие модемы быстро выходят из строя. Более детальное рассмотрение вопросов защиты от НСВ по коммуникационным каналам приведено в следующем подразделе.
Возникновение наводок в сетях питания чаще всего связано с тем, что различные ТСПИ подключены к общим линиям питания. Однофазная система распределения электроэнергии должна осуществляться трансформатором с заземленной средней точкой, трехфазная — высоковольтным понижающим трансформатором. Сетевые фильтры выполняют две защитные функции в цепях питания ТСПИ:
• защита аппаратуры от внешних импульсных помех;
• защита от наводок, создаваемых самой аппаратурой.
Поскольку устранение наводок в цепях аппаратуры ТСПИ чрезвычайно важно, к фильтрам цепей питания предъявляются довольно жесткие требования. Затухание, вносимое в цепи постоянного или переменного тока частотой 50 или 400 Гц, должно быть минимальным и иметь значение в широком диапазоне частот: до 109 или даже 1010 ГГц, в зависимости от конкретных условий.
При выборе фильтров для цепей питания нужно исходить из следующих параметров цепей и фильтров:
• номинальных значений токов и напряжений в цепях питания, а также допустимого значения падения напряжения на фильтре при максимальной для данной цепи нагрузке;
• ограничений, накладываемых на допустимые значения искажений формы напряжения питания при максимальной нагрузке;
• допустимых значений реактивной составляющей тока на основной частоте напряжения питания;
• необходимого затухания фильтра с учетом заданных значений сопротивлений нагрузки и источников питания;
• механических характеристик (размеры, масса, способ установки и тип корпуса фильтра);
• степени экранирования фильтра от различных посторонних полей, обеспечиваемого конструкцией его корпуса.
Рассмотрим влияние этих параметров более подробно.
Напряжение, приложенное к фильтру, должно быть таким, чтобы оно не вызывало пробоя конденсаторов фильтра при различных скачках питающего напряжения, включая скачки, обусловленные переходными процессами в цепях питания. Чтобы при заданных массе и объеме фильтр обеспечивал наилучшее подавление наводок в требуемом диапазоне частот, его конденсаторы должны обладать максимальной емкостью на единицу объема или массы. Кроме того, номинальное значение рабочего напряжения конденсаторов выбирается, исходя из максимальных значений допустимых скачков напряжения цепи питания, но не более их.
Ток через фильтр должен быть таким, чтобы не возникало насыщения сердечников катушек фильтров. Кроме того, следует учитывать, что с увеличением тока через катушку увеличивается реактивное падение напряжения на ней. Это приводит к тому, что:
• ухудшается эквивалентный коэффициент стабилизации напряжения в цепи питания, содержащей фильтр;
• возникает взаимосвязь переходных процессов в различных нагрузках цепи питания.
Наибольшие скачки напряжения при этом возникают во время отключения нагрузок, так как большинство из них имеет индуктивный характер. Затухание, вносимое фильтром, может быть выражено следующим образом:
A(dB) = 20 lg UAUB = 10 lg PAPB , где UB, PB, UA, PA — напряжения и мощность, подводимые к нагрузке, соответственно, до и после включения фильтра.
Фильтры в цепях питания могут быть самой разной конструкции: их объемы составляют от 0,8 см3 до 1,6 м3, а масса — от 0,5 до 90 кг. В общем случае, размеры и масса фильтра будут тем больше, чем:
• больше номинальное напряжение и ток фильтра;
• меньше потери на внутреннем сопротивлении фильтра;
• ниже частота среза;
• больше затухание, обеспечиваемое фильтром вне полосы пропускания (т.е. чем больше число элементов фильтра).
Связь между входом и выходом фильтра зачастую может быть довольно значительной (не хуже 60 дБ), несмотря на разнообразные средства борьбы с ней. Конструкция фильтра должна обеспечивать такую степень ослабления этой связи, которая позволила бы получить затухание, обеспечиваемое собственно фильтром. Поэтому, в частности, фильтры с гарантированным затуханием в 100 дБ и больше выполняют в виде узла с электромагнитным экранированием, который помещается в корпус, изготовленный из материала с высокой магнитной проницаемостью магнитного экрана. Этим существенно уменьшается возможность возникновения внутри корпуса паразитной связи между входом и выходом фильтра из-за магнитных, электрических или электромагнитных полей.
К числу защищаемых устройств относят самую разнообразную аппаратуру: компьютеры, приемники диапазона длинных и средних волн, радиотрансляционные приемники и т.п. Сетевой фильтр включают между сетью и устройством потребления.
На рис. 4.1 приведена типовая схема сетевого фильтра питания. Промышленные устройства могут отличаться от нее и в сторону упрощения, и в сторону усложнения схемы (например, с включением в нее индикации различных режимов работы и т.д.).
Рисунок 4.1 - Схема электрическая принципиальная сетевого фильтра
Во всех случаях будем иметь в виду трехпроводную (европейскую) сеть питания (фаза — ноль — земля). Итак по схеме: сразу на входе фильтра стоит устройство VDR1 — варистор. Его основная задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он «замыкает» на себя эту помеху, не позволяя ей пройти дальше. Но особенность в том, что варисторы, обычно устанавливаемые в промышленных фильтрах, начинают «работать» с напряжения 275–300 В (среднее значение), 350–385 В (максимальное напряжение срабатывания) (из паспортной характеристики варисторов). А для фильтрации помех в 230 – 300 В обычно используют LC-фильтры, то есть электрические цепи, состоящие из индуктивностей (L) и емкостей (C). На нашей схеме это специальный дроссель Tr1 и емкости С1, С2, С3. Это так называемые реактивные элементы, сопротивление их постоянному току (или току низкой частоты) одно, а току высокой частоты — совершенно другое (отличающееся на порядки). А так как частота импульсной помехи во много раз больше частоты сети питания (50 Гц), то становится ясно, что нужно сделать так, чтобы ток сети питания свободно прошел через фильтр, а вот все высокочастотные добавки (импульсные помехи) были задержаны. Сопротивление LC-фильтра резко возрастает с увеличением частоты тока, и таким образом происходит задержка помехи. Помехи могут возникать не только между сетевыми проводами («фазой» и «нулем») — их «фильтрует» емкость С3, но и между «фазой» и «землей», а также возможны помехи «ноль» — «земля». Для эффективного подавления таких помех и необходимо наличие физического заземления, а в фильтре — наличие фильтрующих емкостей С1 и С2. Они замыкают на себя высокочастотные помехи такого рода и не позволяют им пройти внутрь защищаемого аппарата.