Лабораторна робота №2
Тема: Перетворення кодів з однієї системи числення в іншу.
Мета: Отримати навички переведення натуральних чисел між системами числення з різними основами.
Завдання:
Згідно номера по списку в журналі викладача необхідно вибрати десяткове число K із табл. 1.
Таблиця 1 – Вихідні дані
№п/п | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Число К | 486 | 317 | 281 | 307 | 436 | 214 | 193 | 325 | 501 | 142 | 398 | 267 | 186 | 469 | 369 | |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | Приклад | |
165 | 205 | 346 | 452 | 374 | 175 | 412 | 159 | 274 | 358 | 245 | 385 | 423 | 253 | 295 | 234 |
Необхідно: перевести взяте з табл. 1 число K між десятковою, двійковою, вісімковою та шістнадцятковою системами числення.
Теоретичні дані:
Перш за все слід відзначити, що найбільш звичною системою числення для людини є десяткова система. Саме вона використовується у повсякденному житті: під час навчання, при розрахунках в магазині, в таксі/маршрутці/трамваї тощо. Крім десяткової системи числення для тих чи інших цілей можуть використовуватися двійкова і кратні до неї – вісімкова та шістнадцяткова – системи числення.
В теорії інформації, а саме в тій її частині, що стосується перетворення кодів з однієї системи числення в іншу, одним із основних є поняття алфавіту (позначається
) з основою .Алфавіт – це множина цифр
, за допомогою яких складається число .В загальному вигляді поняття алфавіту можна представити у вигляді виразу:
(1)де
– загальна кількість цифр алфавіту .Загальна кількість
цифр алфавіту називається основою системи числення.Існують різноманітні алфавіти, що відрізняються загальною кількістю цифр, які можуть використовуватися при складанні числа.
Для ілюстрації приведемо в табл. 2 вказані характеристики найбільш вживаних систем числення:
Таблиця 2 – Характеристики алфавітів найбільш поширених систем числення
Алфавіт | Множина цифр алфавіту | Основа | |
двійковий | |||
вісімковий | |||
десятковий | |||
шістнадцятковий | * |
*
– символи, які позначають в алфавіті цифри, які відповідають десятковим числам 10, 11, 12, 13, 14 та 15 відповідно.Таким чином, в якості коректних двійкових чисел можна вказати такі: 100111, 111, 0, 10; тоді як число 100211 неможливе, адже в двійковому алфавіті немає цифри "2". З аналогічних причин можливі шістнадцяткові числа 106, E1F, 1BC, 589, проте неможливі 1I6, O04, 3P24.
Основа системи числення деякого числа
вказується після нього у вигляді нижнього індексу, наприклад, запис 200910 означає десяткове число 2009.Для зручності завдання на перекодування чисел з однієї системи числення в іншу запишемо у вигляді відповідності між їх основами:
(пряме перекодування), або (пряме перекодування з подальшою перевіркою).Для ілюстрації даного положення розглянемо три вирази:
1)
= 786110, = ,2)
= 786110, = ,3)
= 786110, = .Перший вираз слід інтерпретувати так: дано десяткове число 7861, його необхідно перекодувати з десяткової системи числення в двійкову, з якої в вісімкову, а потім число з вісімкової системи – у шістнадцяткову.
Другий вираз передбачає те саме, що і перший вираз, за винятком того, що після кожного прямого перекодування необхідно додатково виконати перевірку – зворотне перекодування.
Третій вираз вимагає переведення десяткового числа лише з десяткової системи числення у двійкову, вісімкову та шістнадцяткову, відповідно, з виконанням перевірок після кожного перекодування.
З цифр алфавіту
можна скласти велику кількість чисел :, (2)
де
–кількість цифр числа .Порядковий номер цифр числа
визначається справа наліво, починаючи з нуля і називається розрядом цифр. Таким чином в числі (2) є розрядів: від 0-го розряду (крайня цифра справа, також називається молодшим розрядом) до –1-го розряду (крайня цифра зліва, також називається старшим розрядом). Наприклад, можна розглядати як п’ятирозрядне двійкове число (нуль в старшому розряді можна не писати, тобто ).