где
Если оценка
Таким образом, расчет безусловного отношения правдоподобия может выполняться рекуррентно с помощью схемы рис 4.3.
По мере получения новых отсчётов точность оценки
4.3. О роли априорного распределения при синтезе алгоритмов совместного обнаружения – оценивания (адаптивный байесовский подход)
До сих пор мы полагали априорное распределение неизвестных параметров
На практике далеко не всегда есть достаточные теоретические или экспериментальные данные для обоснованного выбора того или иного закона распределения
Положительный ответ на этот вопрос следует из фундаментального свойства сходимости байесовских алгоритмов к алгоритмам, соответствующим точно известным параметрам сигнала, причем это свойство сохраняется при любом априорном распределении. Отмеченная инвариантность позволяет распространить методы байесовской теории на представляющий основной интерес случай, когда априорное распределение
Соответствующий подход, получивший название адаптивного байесовского, рассматривает априорное распределение как некоторую весовую функцию, которая лишь задает начальные условия для фильтрации оценок неизвестных параметров и поэтому влияет только на скорость их сходимости. Другая трактовка априорного распределения, возможная в рамках адаптивного байесовского подхода, состоит в том, что оно рассматривается как весовая функция, по которой усредняется условный риск некоторого решающего правила относительно байесовского. Очевидно, что обе трактовки открывают достаточную свободу для выбора функции
Основываясь на изложенном, можно утверждать, что рассмотренные нами алгоритмы совместного обнаружения – оценивания, будучи синтезированными при конкретном виде априорного распределения
В заключении отметим, что схемы совместного обнаружения – оценивания могут применяться и в тех случаях, когда неизвестный параметр является мешающим, т.е. не представляет самостоятельного интереса. Оценка параметра на выход схемы при этом не выдается, сам же алгоритм обнаружения остается прежним.