Переходы, в которых изменение концентрации примеси на границе слоев p- и n-типа могут считаться скачкообразными
называются ступенчатыми.В плавных переходах градиент концентрации примеси конечен, но удовлетворяет неравенству(1.1.4).
Практически ступенчатыми могут считаться p-n-переходы, в которых изменение концентрации примеси существенно меняется на отрезке меньшем Ld.
Такие переходы могут быть полученными путем сплавления, эпитаксии.
По отношению к концентрации основных носителей в слоях p- и n-типа переходы делятся на симметричные и несимметричные.
Симметричные переходы имеют одинаковую концентрацию основных носителей в слоях (pp ≈ nn). В несимметричных p-n-переходах имеет место различная концентрация основных носителей в слоях (pp >> nn или nn >> pp), различающаяся в 100–1000 раз [3].
Наиболее просто поддаются анализу ступенчатые переходы. Структура ступенчатого перехода представлена на рис. 1.2. Практически все концентрации примесей в p- и n-областях превышают собственную концентрацию носителей заряда ni. Для определения будем полагать, что эмиттером является p–область, а базой n–область. В большинстве практических случаев выполняется неравенство
где
и -результирующие концентрации примеси в эмиттере и базе.Рисунок 1.2 Распределение примеси и носителей заряда в ступенчатом P-N переходе: (а)- полулогарифмический масштаб; (б)- линейный масштаб.
В глубине эмиттера и базы концентрация основных носителей заряда практически совпадает с результирующей концентрацией примеси:
pро =Nэ, nnо=NБ, (1.2.1)
а концентрация не основных носителей определяется законом действующих масс:
nр0=ni/pр0=ni/Nэ (1.2.2.а)
pn0=ni/nn0=ni/NБ (1.2.2.б)
Индексы «p» и «n» соответствуют p- и n-областям, а индекс «0» соответствует состоянию термодинамического равновесия. Следует отметить, что концентрация не основных носителей в базе больше чем в эмиттере (а при Nэ>>NБ много больше). На рис. 1.2.а распределение примесей и носителей заряда представлено в полулогарифмическом масштабе.
Переход занимает область –lр0 < x < ln0. Конечно границы перехода x=-lp0 и x=ln0 определены в некоторой степени условно, так как концентрация основных носителей изменяется плавно. Тем не менее, из рисунка видно, что уже на небольшом расстоянии от границ внутри перехода выполняется равенство:
P<<Nэ, (1.2.3)
n<<NБ.
Неравенства (1.2.3) выполняется во всем p-n-переходе.
На рис. 1.2.б распределение концентрации носителей и примесей заряда изображены в линейном масштабе. Из рисунка видно, что в эмиттерной области перехода (-lp0<x<0) концентрация подвижных носителей очень мала по сравнению с концентрацией примеси. Эта область имеет отрицательный объемный заряд, плотность которого не зависит от координаты:
рэ = -lNэ.
В базовой области перехода (0<x<lno) плотность объемного заряда положительна:
pБ=lNб.
Для n-области основными носителями являются электроны, для p-области дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей.
Помимо основных носителей эти области содержат неосновные носители: n-область - дырки (pno), p-область –электроны (nро). Их концентрацию можно определить, пользуясь законом действующих масс:
nno∙Pno=pno∙nno=ni2. При nno=ppo=1022 м-3 и ni=1019 м-3 (для Ge)
получаем pno=nро=1016 м.
Таким образом, концентрация дырок в p-области на шесть порядков выше концентрации их в n-области, точно также концентрация электронов в n-области на шесть порядков выше их концентрации в p-области. Т.к. концентрация дырок в области p выше, чем в области n, то часть дырок в результате диффузии перейдет в n- область, где в близи границы окажутся избыточные дырки, которые будут рекомбинировать с электронами. Соответственно в этой зоне уменьшается концентрация свободных электронов, и образуются области нескомпенсированных положительных ионов донорных примесей. В p-области уход дырок из граничного слоя способствует образованию областей с нескомпенсированными отрицательными зарядами акцепторных примесей, созданными ионами.
Подобным же образом происходит диффузионное перемещение электронов из n-слоя в p-слой. Однако в связи с малой концентрацией электронов по сравнению с концентрацией дырок перемещением основных носителей заряда высокоомной области в первом приближении пренебрегают. Перемещение происходит до тех пор, пока уровни Ферми обоих слоев не уравняются [4].
а)б)
в)
Рисунок 1.3 Физические процессы в полупроводнике: (а) – плоскость физического перехода; (б) – распределение концентрации акцепторной и донорной примеси в полупроводнике; (в) – объёмный заряд.
На рис. 1.3.б, показано изменение концентрации акцепторных и донорных атомов при перемещении вдоль оси Х перпендикулярной плоскости. Неподвижные объемные заряды создают в p-n-переходе контактное электрическое поле с разностью потенциалов, локализованное в области перехода и практически не выходящее за его пределы.
Поэтому вне этого слоя, где поля нет, свободные носители заряда перемещаются хаотично и число носителей, ежесекундно наталкивающихся на слой объемного заряда, зависит только от их концентрации и скорости их теплового движения, которое подчиняется классической статистики Максвелла-Больцмана.
На рис. 1.3.в показаны неподвижные объемные заряды, образовавшиеся в p-n-переходе.
Неосновные носители - электроны из p-области и дырки из n-области, попадая в слой объемного заряда подхватываются контактными полем Vк и переносятся через p-n переход.
Другие условия складываются для основных носителей. При переходе из одной области полупроводника в другую они должны преодолевать потенциальный барьер qVк, сформировавшийся в p-n-переходе. Для этого они должны обладать кинетической энергией движения вдоль оси Х, не меньшей qVк.
На первых порах, после мысленного приведения p- и n-областей в контакт, потоки основных носителей значительно превосходят потоки неосновных носителей. Но по мере роста объемного заряда увеличивается потенциальный барьер p-n-перехода, и потоки основных носителей резко уменьшаются. В тоже время потоки неосновных носителей не зависят от qVk и остаются неизменными. Поэтому относительно скоро потенциальный барьер достигает такой высоты, при котором потоки основных носителей сравниваются с потоками неосновных носителей.
Это соответствует установлению в p-n-переходе состояния динамического равновесия.
Из рис. 1.3.а видно, что в некоторой области Х=Хф концентрация электронов и дырок одинакова:
n0(Хф) = p0(Хф) = n
Эта плоскость называется плоскостью физического перехода в отличие от плоскости металлургического (или технологического) перехода Х=0, где результирующая концентрация примеси равна нулю. В симметричных переходах плоскости физического и металлургического переходов совпадают.
Электронно-дырочные переходы в зависимости от технологии изготовления разделяются на точечные, сплавные, диффузионные, эпитаксиальные, планарные и другие.
Образуются точечно-контактным способом (рис. 1.4.). К полированной и протравленной пластине монокристаллического полупроводника n-типа подводят иглу, например из бериллиевой бронзы с острием 20-30 мкм. Затем через контакт пропускают мощные кратковременные импульсы тока. Место контакта разогревается до температуры плавления материала зонда, и медь легко диффундирует внутрь полупроводника образуя под зондом небольшую по объему область p-типа. Иногда перед электрической формовкой на конец иглы наносят акцепторную примесь (In или Аl), при этом прямая проводимость контакта доходит, до 0,1 см. Таким образом, электронно-дырочный переход образуется в результате диффузии акцепторной примеси из расплава зонда и возникновения под ним области p-типа в кристаллической решетке полупроводника n-типа. Точечные переходы применяют при изготовлении высококачественных диодов для радиотехнического оборудования.
1.3.2 Сплавные переходы.
Обычно получают выплавлением примеси в монокристалл полупроводника (рис. 1.5.). Монокристалл, например, германия n-типа распиливают на пластины толщиной 200-400 мкм и затем после травления и полировки разрезают на кристаллы площадью в два-три миллиметра и больше. На кристаллы, помещенные в графитовые кассеты, накладывают таблетку акцепторного материала, чаще всего индия. Затем кассета помещается в вакуумную печь, в которой таблетка индия и слой германия под ней расплавляются. Нагрев прекращается и при охлаждении германий кристаллизуется, образуя под слоем индия слой p-типа. Застывшая часть индия представляет собой омический (невыпрямляющий) контакт, на нижнюю часть пластины наносят слой олова, который служит омическим контактом к германию n-типа. К индию и олову припаивают выводы обычно из никелевой проволочки.