Случай
Следствие 2.1. Марковский процесс эргодичен. Для того, чтобы его стационарное распределение представлялось в мультипликативной форме (3.1.9), достаточно, чтобы во всех узлах сети выполнялись условия
Множители в (3.1.9) имеют форму
а постоянная нормировки имеет вид
Случай
Следствие 2.2. Марковский процесс эргодичен. Для того, чтобы его стационарное распределение представлялось в мультипликативной форме (3.1.9), достаточно, чтобы во всех узлах сети выполнялись условия
Множители в (3.1.9) имеют форму
а постоянная нормировки имеет вид
Случай
Следствие 2.3. Марковский процесс эргодичен. Для того, чтобы его стационарное распределение представлялось в мультипликативной форме (3.1.9), достаточно, чтобы во всех узлах сети выполнялись условия
Множители в (3.1.9) имеют форму
а постоянная нормировки имеет вид
Случай
Следствие 2.4. Марковский процесс эргодичен. Для того, чтобы его стационарное распределение представлялось в мультипликативной форме (3.1.9), достаточно, чтобы во всех узлах сети выполнялись условия
Множители в (3.1.9) имеют форму
а постоянная нормировки имеет вид
В следующих двух случаях стационарное распределение всегда имеет форму произведения, поскольку марковский процесс, описывающий изолированный узел в фиктивной окружающей среде, обратим. Поэтому не надо накладывать никаких ограничений типа (3.1.13), (3.1.14).
Случай