Смекни!
smekni.com

Расчет дросселя бустерной схемы DC DC преобразователя (стр. 2 из 4)

Хорошо видно, что чем меньшее разрядное время tpнам удастся сделать, тем большее напряжение мы можем получить на нагрузке. Конечно, такая ситуация может быть только в идеальной схеме. Реальная схема имеет существенные отличия.

1.2. Определение параметров бустерной схемы

1.2.1. Индуктивность дросселя L

Как было отмечено выше, цикл работы бустерной схемы состоит из двух фаз: фазы заряда дросселя и фазы его разряда на нагрузку. Кроме того, стабилизатор должен иметь возможность передавать от источника в нагрузку достаточную, мощность, которая определяется из выражения:

где iH - ток нагрузки, А.

В то же время ток нагрузки определяется током заряда дросселя и не может стать больше i3. Ранее мы также выяснили, что ток i3 в индуктивности нарастает по линейному закону:

После несложных преобразований получим:

Мы получили еще один интересный результат-нельзя бесконечно увеличивать величину индуктивности. Если L будет слишком большой, мы не сможем передать в нагрузку необходимую мощность. Казалось бы, если мы ограничены в выборе индуктивности "сверху", почему бы нам не сделать ее сколь угодно малой и тем самым, повысив ток заряда, повысить передаваемую мощность? Увы, нижняя граница величины индуктивности тоже существует, и к определению Lminследует отнестись даже более внимательно, чем к оценке Zmax. Выбрав индуктивность слишком большой, мы рискуем лишь тем, что не получим требуемой мощности в нагрузке. А вот если индуктивность окажется слишком маленькой, это может стоить нам необратимого разрушения всей схемы стабилизатора. Дело в том, что транзистор, используемый в качестве ключевого элемента Кл, может пропустить через себя ток, сила которого ограничена цифрой, приведенной в технических условиях на данный элемент (максимальный ток коллектора или стока). Поскольку ток в индуктивном элементе нарастает линейно, его максимальное значение (которое появится в момент, соответствующий переходу схемы из фазы I в фазу 2) ни в коем случае не должно превысить допустимых для транзистора значений, что показано на рис.8. Определим критическое значение индуктивности.

Поскольку ток i0 течет всегда, максимальный ток через индуктивный элемент будет:

Устремляя к нулю ток i0 (минимальный режим), получаем:

На рисунке 8 индуктивность L2 является минимально допустимой, L3 безопасна для схемы, L, может привести к разрушению стабилизатора.

При определении Lminрекомендуется принять время заряда t3 (для большинства схем): t3 = 0.9/f.

Максимальный ток, допускаемый для силового ключа, можно найти в технических условиях на данный элемент (транзистор, микросхему). Следует также учесть, что современный разработчик импульсной техники едва ли предпочтет схему, построенную на дискретных элементах, интегральной схеме с такими же параметрами. Скорее, он выберет уже готовую микросборку. Если в составе микросборки уже содержится силовой транзистор, нужно найти в технических условиях на данный элемент значение параметра swithcurrent (ток переключения). Мы уже знаем, что мощность, рассеиваемая транзистором, определяется формой тока через транзистор. Поскольку ток в бустерной схеме носит линейно-нарастающий характер, действующее значение тока в этом случае будет:

Для максимального режима при коэффициенте заполнения 0,9:

IVT = 0,67 iL.

Максимальная мощность, которая может быть передана в нагрузку, таким образом, определяется максимальным током через ключевой элемент.

Методика расчета индуктивного элемента следующая:

1) по заданным параметрам t3max, Uн, f, Pн, Unmin определяем Lmax;

2) по заданным параметрам Unmin, t3max, in определяем Lmin;

3) расчетное значение Lmaxдолжно получиться больше Lmin, в противном случае преобразователь просто не сможет выполнить предъявленные к нему требования по току или по мощности;

4) в качестве L рекомендуется принять Lmin.

1.2.2. Емкость конденсатора С

Поскольку выходное напряжение стабилизатора всегда характеризуется наличием пульсаций, важно принять меры по их снижению. Для этого в бустерной схеме предусматривается фильтровой конденсатор С, емкость которого рассчитывается следующим образом.

Величина зарядной добавки конденсатора, обусловленной разрядом дросселя L:

где Q - заряд, накопленный индуктивностью в первой фазе и передаваемый конденсатору; С - емкость фильтрующего конденсатора; Q = tр iр.

С другой стороны, как мы уже выяснили, величина зарядного тока определяется по формуле:

При равенстве зарядного и разрядного токов абсолютный уровень пульсаций в нагрузке:

Физически это означает, что энергия, накапливаемая в индуктивности, переходит в энергию заряженного конденсатора без потерь, что вполне допустимо считать в практических расчетах.

Коэффициент пульсаций:

Из этой формулы мы можем определить величину С.

1.2.3. Диод VD

В качестве блокирующего диода рекомендуется использовать диоды Шоттки, обладающие, по сравнению с обычными диодами, меньшим падением напряжения в прямом направлении, повышенным быстродействием. Все эти достоинства повышают КПД схемы. Разработчику необходимо выбрать подходящий по прямому току, обратному напряжению и конструкции корпуса диод Шоттки.

1.2.4. Ключевой элемент

В качестве ключевого элемента бустерной схемы в последнее время все чаще используют силовые полевые транзисторы MOSFET.

1.3. Отличие реальной схемы от идеальной

До сих пор мы рассматривали идеализированную схему бустерного преобразователя, полагая, что ключевой элемент, источник питания, дроссель и диод имеют нулевое активное сопротивление. В реальных схемах это не так.

Рис.9. Реальная схема бустерного преобразователя.

rдр – активное сопротивление обмотки дросселя;

ru – внутреннее сопротивление источника питания;

rкл – активное сопротивление ключевого элемента в состоянии "замкнут";

rvd – активное сопротивление блокирующего диода.

Предположим, что rкл ~ rvd. Тогда сопротивления разрядной и зарядной цепей дросселя окажутся также одинаковыми, что и отражено на рис.10: r = ru + rдр + rкл = ru + rдр + rvd.

Рис.10. Преобразованная расчетная схема, в которой учитываются все паразитные сопротивления.

Давайте выясним характер регулировочной характеристики в случае реальной схемы. В зарядной и разрядной фазах теперь необходимо учесть падение напряжения на сопротивлении r. Составим уравнение баланса токов через индуктивность в фазе заряда и разряда:

После несложных преобразований получаем:

Считаем, что iн = iL /2.

Окончательно выражение для реальной регулировочной характеристики:

Графически семейство регулировочных характеристик с разным соотношением сопротивления нагрузки и паразитных сопротивлений показано на рис.11.

Рис.11. Семейство регулировочных характеристик бустерных преобразователей.

Данное выражение справедливо для γ < γкр, где γкр - так называемый критический коэффициент заполнения, при превышении которого регулировочная характеристика стабилизатора приобретает падающий характер. Это происходит потому, что падение напряжения на паразитном сопротивлении rуже не может быть скомпенсировано нарастанием тока в индуктивности. Поэтому пользоваться приведенной формулой на "падающем" участке регулировочной характеристики уже нельзя. Да и проектировать стабилизатор для работы в таком режиме бессмысленно.

Критический коэффициент заполнения определяется из выражения:

Чтобы получить достаточно протяженный начальный участок и, следовательно, расширить диапазон регулирования выходного напряжения, необходимо уменьшать сопротивление зарядной цепи r. Из рисунка 11. хорошо видно, что невозможно получить бесконечно большие значения напряжений UHпри ограниченном напряжении Un. Практически в стабилизаторах коэффициент заполнения выбирается не более 0,8...0,9, а коэффициент повышения напряжения для самых высоковольтных вариантов - не более 5.

1.4. Проектирование дросселя для бустерной схемы

Изготовители интегральных схем для источников вторичного электропитания рекомендуют использовать в маломощных бустерных схемах преобразователей индуктивные элементы, имеющие минимальные паразитные параметры (межвитковые емкости, индуктивности рассеяния и др.). Поскольку используемые в настоящее время частоты преобразования смещаются в высокочастотную область (100...300 кГц), индуктивные элементы, учитывая это обстоятельство, должны обладать следующими обязательными свойствами: