Смекни!
smekni.com

Разработка электронного кодового замка (стр. 3 из 5)

Рисунок 2.6.2 – структурная схема микроконтроллера AT89S51

Микроконтроллер выпускается в нескольких вариантах [5] (таблица 2.6.1).

Таблица 2.6.1 – варианты исполнения микроконтроллера

Частота, МГц Напряжение питания, В Код для заказа Корпус Температурный диапазон
24 4.0…5.5 AT89S51-24AC 44A Коммерческий (0…+70°С)
AT89S51-24JC 44J
AT89S51-24PC 40P6
24 4.5…5.5 AT89S51-24AI 44A Коммерческий (-40…+85°С)
AT89S51-24JI 44J
AT89S51-24PI 40P6
33 4.5…5.5 AT89S51-33AC 44A Коммерческий (0…+70°С)
AT89S51-33JC 44J
AT89S51-33PC 40P6

Для выполнения поставленной задачи, как было сказано выше, нам нужен микроконтроллер, рассчитанный на коммерческий диапазон температур

(-40…+85°С). Тип корпуса в данном случае роли не играет, так как в корпусе кодового замка входной двери дома достаточно места для расположения любого из них.

2.7 Выбор стабилизатора напряжения

Для питания микроконтроллера элементов необходим стабилизированный источник питания напряжением +5В. В качестве стабилизатора лучше всего использовать микросхему КР142ЕН5. Она обеспечивает достаточную стабильность выходного напряжения и осуществляет фильтрацию помех, амплитуда которых может достигать 1В. При установке ее на дополнительный радиатор максимальный ток нагрузки составляет около 2А. Помимо этого микросхема имеет защиту от короткого замыкания.

Серия КР142ЕН5 - трехвыводные стабилизаторы с фиксированным выходным напряжением в диапазоне от 5В до 27 В, могут найти применение в широком спектре радиоэлектронных устройств. Диапазон напряжений, перекрываемых данной серией стабилизаторов, позволяет использовать их в качестве источников питания, логических систем, измерительной техники, устройств высококачественного воспроизведения и других радиоэлектронных устройств. Несмотря на то, что основное назначение этих приборов - источники фиксированного напряжения, они могут быть использованы и как источники с регулированием напряжения и тока путем добавления в схемы их применения внешних компонентов. Внешние компоненты могут быть использованы для ускорения переходных процессов. Входной конденсатор необходим только в том случае, если регулятор находится на расстоянии более 5 см от фильтрующего конденсатора источника питания. Внешний вид и типовая схема включения приведены на рисунках 2.7.1 и 2.7.2 соответственно. Технические характеристики представлены в таблице 2.7.1.

Основные особенности:

- Встроенная защита от перегрева;

- Встроенный ограничитель тока КЗ;

- Коррекция зоны безопасной работы выходного транзистора;

- Диапазон температур хранения -55 ... +150С;

- Рабочий диапазон температур кристалла -45 ... +125С.

Рисунок 2.7.1 – Внешний вид и расположение выводов стабилизатора КР142ЕН5А

Назначение выводов стабилизатора КР142ЕН5А:

- 1 – вход;

- 2 – общий;

- 3 – выход.

Рисунок 2.7.2 – Типовая схема включения стабилизатора

Таблица 2.7.1 - Электрические характеристики стабилизатора КР142ЕН5А:

Наименование Обозначение Условия измерения Мин. Тип. Макс. Единица измерения
Выходное напряжение Vout Tj=25°C 4.9 5.0 5.1 B
7B<Vin<20B5mA<Iout<1.0APt<15Вт 4.75 - 5.25 B
Нестабильность по входному напряжению Voline Tj=25°C 7B<Vin<25B - 3 100 mB
8B<Vin<12B - 1 50 mB
Нестабильность по току нагрузки Voload Tj=25°C 5mA<Iout<1.5A - 15 100 mB
250mA<Iout<750mA - 5 50 mB
Ток покоя Iq Tj=25°C,Iout=0 - 4.2 8.0 mA
Нестабильность тока покоя Iq 7B<Vin<25B - - 1.3 mA
5mA<Iout<1.0A - - 0.5 mA
Выходное напряжение шума Vn Ta=25°C, 10Гц<f<100кГц - 40 - mkB
Коэффициент подавления пульсации Rrej f=120Гц 62 78 - дБ
Падение напряжения Vdrop Iout=1.0A, Tj=25°C - 2.0 - B
Выходное сопротивление Rout f=1 кГц - 17 - мОм
Ток КЗ Ios Tj=25°C - 750 - mA
Максимальный выходной ток Io peak Tj=25°C - 2.2 - A
Температурная нестабильность выходного напряжения VoutTj Iout=5mA, 0°C<Tj<125°C - 1.1 - мВ/°C


3. Построение принципиальной электрической схемы

3.1 Сопряжение микроконтроллера и клавиатуры

В данном устройстве используется динамический опрос клавиатуры, так как выбранная двенадцатикнопочная клавиатура имеет всего семь выводов и подключить каждую кнопку к отдельному выводу порта микроконтроллера не представляется возможным, хотя микроконтроллер и имеет достаточное количество свободных портов. Кроме того, такой способ включения упрощает схему и уменьшает число портов, занятых клавиатурой (рисунок 3.1.1).

Рисунок 3.1.1 - Схема сопряжения МК и клавиатуры

Для работы с клавиатурой используются 7 выводов порта P0. Все четыре ряда кнопок опрашиваются по очереди. Для опроса первого ряда на выводах P0.1-P0.3 программно устанавливаются единицы, а на выводе P0.0 – ноль. Теперь если нажать любую кнопку первого ряда, вывод P0.0 замкнётся с выводом P0.4, P0.5 или P0.6, и на нём установится ноль. Если ни одна кнопка не нажата, на выводах P0.4, P0.5 и P0.6 будет единица за счёт подтягивающих резисторов R6-R8, которые создают на выводах высокий потенциал. Резисторы возьмём равными 4,7КОм. Аналогично опрашиваются оставшиеся три ряда кнопок на клавиатуре. При нажатии на кнопку имеет место явление дребезга контактов, однако эту проблему можно решить программно. Для этого при нажатии кнопки вводится задержка, по длительности равная переходному процессу в цепи, что позволяет избежать ложных срабатываний кнопок. Величина задержки подбирается экспериментально для каждого типа оборудования. Для примера будем используется задержка длительностью 5 мс. У такого способа есть недостаток – он замедляет работу программы, однако в данном случае это не имеет значения, так как для выполнения поставленной задачи не требуется большое быстродействие. За те 5 мс, которые программа ждёт, пользователь просто не успеет нажать на другую кнопку.

3.2 Сопряжение микроконтроллера и исполнительного элемента электромеханического замка

Для коммутации цепи питания привода электромеханического замка используются NPN-транзистор Q1 и оптопара OC1 (рисунок 3.2.1). Таким образом обеспечивается замыкание цепи с большими токами и напряжениями и гальваническая развязка цепей микроконтроллера и привода замка. Здесь используется широко распространённый транзистор отечественного производства КТ815А, характеристики которого (таблица 3.2.1) удовлетворяют требуемым (напряжение 12В и ток 0,5А) с некоторым запасом.

Таблица 3.2.1 – Параметры транзисторов серии КТ815

Наимен. тип Uкб Uкэ, В Iкmax(и), мА Pкmax(т), Вт h21э Iкбо, мкА fгр., МГц Uкэн, В
КТ815А n-p-n 40 30 1500(3000) 1(10) 40-275
50
3
<0.6
КТ815Б 50 45 1500(3000) 1(10) 40-275
50
3
<0.6
КТ815В 70 65 1500(3000) 1(10) 40-275
50
3
<0.6
КТ815Г 100 85 1500(3000) 1(10) 30-275
50
3
<0.6

Оптопара подключается к порту P0.0 микроконтроллера через резистор R2, ограничивающий ток. Входное напряжение оптопары 1,3В при токе 25 мА, значит, падение напряжения на резисторе должно быть (5-1,3)В=3,7 В. Тогда номинал сопротивления будет 3,7В/0,025А=148 Ом. Ближайшее значение ряда номинальных сопротивлений 150 Ом. Выходной каскад оптопары открывается низким уровнем на выводе микросхемы и закрывается высоким. Когда он открыт, напряжение подаётся на базу транзистора Q1 и он открывается, замыкая цепь привода замка. Рассчитаем сопротивление резистора R3. Для этого воспользуемся законом Ома [7]. Через цепь коллектор-эмиттер протекает ток 0,5А. Коэффициент передачи транзистора по току равен 40, значит ток база-эмиттер будет равен 0,5А/40=0,0125А. На базу подаётся 5В, а на базовом переходе транзистора падает 1,2В, поэтому сопротивление резистора будет равно (5-1,2)В/0,0125А=304 Ом. Возьмём резистор на 300Ом. Для того чтобы транзистор самопроизвольно не открываться обратным током коллектора, ставится шунтирующий резистор R10. Пусть через него протекает ток, в три раза меньший, чем ток базы транзистора. Падение напряжения на базовом переходе 1,2В. Тогда сопротивление R10 будет равно 1,2В/(0,0125А/3)=288 Ом. Используем резистор 270 Ом. Так как привод замка основан на индуктивности, то по закону электромагнитной индукции при коммутации в ней возникают обратные токи. Диод D2 шунтирует индуктивность в обратном направлении и препятствует появлению обратных токов в цепи. По своим характеристикам нам подходит диод КД208А. Его максимальное обратное напряжение 100 В, прямой ток 1 А.