5.
6. Влияние априорной неопределенности на величину
пороговых сигналов и характеристики обнаружения
5.1. Величина информации Кульбака – Леблера для разных моделейсигналов.
Влияние априорной неопределенности при переходе от полностью известного сигнала (2.1) к случайному сигналу с релеевским распределением огибающей (3.11) можно оценить, рассчитав объем информации Кульбака – Леблера
Можно показать, что для релеевского сигнала
В частном случае малых отношений сигнал/шум
Для модели сигнала с неизвестной случайной фазой (см. 3.7) расчет информации Кульбака - Леблера возможен только численными методами.
Результаты расчета величины
Функция правдоподобия сигнала | Расчёт отношения сигнал/шум | ||||||
-6дБ | -3дБ | 0дБ | 3дБ | 6дБ | 12дБ | ||
(2.1) | | -0,25 | -0,5 | 1 | 2 | 4 | 16 |
0,25 | 0,5 | 1 | 2 | 4 | 16 | ||
(3.7) | | -0,024 | -0,07 | -0,24 | 1 | -1,91 | -10,4 |
0,28 | 0,09 | 0,3 | 1,1 | 2,58 | 14,5 | ||
(3.11) | | -0,023 | -0,07 | -0,19 | -0,43 | -0,8 | -1,89 |
0,027 | 0,09 | 0,3 | 0,81 | 2,4 | 13,2 |
Из таблицы следует что, например, при отношении сигнал … шум,
Сигнал с постоянной амплитудой и случайной фазой занимает промежуточное положение между точно известным и релеевским. Если по сравнению с дисперсией шума амплитуда сигнала мала, факт ее постоянства становится малосущественным, распределение Релея – Райса стремится к релеевскому, и характеристика оптимального детектора
5.2. Влияние априорной неопределенности на пороговые сигналы и характеристики обнаружения.
На практике при сравнении обнаружителей для различных моделей сигналов часто пользуются не величиной информации Кульбака – Леблера, а величиной порогового сигнала, т.е. расчетного отношения сигнал..помеха в одном отсчете, обеспечивающего принятие решения с заданными вероятностями ошибок первого и второго рода
Рассмотрим пример такого расчета для полностью известного сигнала применительно к обнаружителю Неймана – Пирсона. (Напомним, что обнаружителем Неймана-Рирсона называют обнаружитель, обеспечивающий максимальное значение вероятности правильного обнаружения
Как было показано в разделе 2, логарифм отношения правдоподобия полностью известного сигнала имеет при гипотезе и альтернативе нормальное распределение:
По определению, вероятность ложной тревоги есть вероятность того, что в отсутствии сигнала логарифм отношения правдоподобия превысит решающий порог:
где
Аналогично, для вероятности пропуска
При заданных
Пример расчета: задано
Из таблиц интеграла вероятностей находим:
Если при том же значении
Для других моделей сигналов взаимосвязь между вероятностями ошибок, значекнием решающего порога и пороговым сигналом носит более сложный характер, поэтому расчет возможен только численными методами, напрмер, методом последовательных приближений. Существует достаточное число таблиц и номограмм, позволяющих упростить этот расчет (см., например, Справочник по радиолокации по ред. М.Сколника).
Результаты таких расчетов удобно представлять в виде характеристики обнаружения, т.е. зависимости вероятности правильного обнаружения от отношения сигнал..шум при фиксированной вероятности ложной тревоги. Примеры таких зависимостей для трех видов сигнала – с точно известными параметрами, с постоянной амплитудой и случайной фазой и с независимыми флуктуациями амплитуды приведены на рисунке 5.1.
Пользуясь характеристиками обнаружения можно определить значения порогового сигнала, которое необходимо , чтобы обеспечить заданные вероятности