где величина
В частности,
Как видно из полученного соотношения, механизм оптимальной обработки сигнала в данном случае подобен механизму работы согласованного фильтра, однако, в дополнение к этому, оптимальная система подавляет в большей степени те частотные составляющие входного воздействия, которые соответствуют относительно большим составляющим энергетического спектра помехи
5.Оптимизация по критерию минимума среднеквадратической ошибки воспроизведения полезного сигнала
Рассмотрим задачу воспроизведения полезного сигнала, представленного реализацией случайного процесса
С учетом результатов 2 в общем случае имеем:
так что суммарная СКО воспроизведения полезного сигнала:
Представим полученное выражение в форме:
Представим сумму вещественных функций
Тогда:
В полученном интеграле оба слагаемые подынтегрального выражения неотрицательны, причем лишь первое из них зависит от вида функции
Следовательно, оптимальный вид функции
При этом величина СКО воспроизведения полезного сигнала, очевидно, вычисляется по формуле:
Заметим, что в случае, когда энергетические спектры процессов
Сравним теперь величину потенциально допустимой относительной СКО в рассмотренном случае с результатом параметрической оптимизации, полученным в 4.1.2. Итак, пусть
Тогда
Вычисляя интеграл и учитывая, что
откуда окончательно минимальная относительная СКО воспроизведения полезного сигнала равна:
Полученный результат иллюстрируется на рисунке ниже. Здесь же пунктиром приведен соответствующий результат параметрической оптимизации в рассмотренном в частном случае использования фильтра с прямоугольной функцией передачи в частотной области.
Как видно из приведенных выше зависимостей, полная оптимизация позволяет получить реальный выигрыш в величине СКО воспроизведения полезного сигнала в сравнении с параметрической оптимизацией.