Министерство образования Российской Федерации
Федеральное государственное образовательное учреждение высшего профессионального образования
Дальневосточный Государственный Аграрный Университет
Институт электрификации и автоматизации сельского хозяйства
Кафедра «ЭПААПК ЭТиА»
Курсовой проект
Расчет стабилизированного источника вторичного электропитания электронных устройств
Выполнил:
студент 3 курса
Яковенко.А.Е
группа 7137
Проверил:
Ременев В.З.
г. Благовещенск 2010г.
Введение
1 Обзор и анализ источников питания
2 Выбор и расчет стабилизатора
3 Расчет выпрямителя и LC – фильтра
3.1 Выбор схемы выпрямителя
4 Выбор трансформатора
5 Литература
В любой сети напряжение не постоянно в течение времени: в зависимости от времени года, времени суток, потребления энергии промышленными предприятиями, аварийных ситуаций, электрическим транспортом и расхода в наших квартирах напряжение в сети то возрастает, то убывает. Следовательно, при питании аппаратуры от этой сети будет изменяться напряжение на выходах выпрямителя и фильтра. Если колебания напряжения сети составляют ±10%, то в таких же пределах изменяется и величина выпрямленного напряжения. При изменении питающего напряжения нарушается режим работы электронных приборов (транзисторов, электронных ламп), что приводит к ухудшению параметров всего устройства. Например, в радиоприемнике при изменении режима работы транзисторов могут возникнуть сильные помехи. Такие же явления наблюдаются в нем при питании от химических источников тока, напряжение которых по мере разрядки уменьшается. Чтобы этого не происходило, напряжение питания электронных устройств часто стабилизируют. Здесь возможны два способа: стабилизация переменного напряжения на входе силового трансформатора или стабилизация выпрямленного напряжения. В первом случае применяют специальные феррорезонансные стабилизаторы. Их недостатками являются большие габариты и вес. Чаще прибегают к стабилизации выпрямленного напряжения, осуществляемой с помощью электронных стабилизаторов.
выходное напряжение UОH= 12 В;
максимальный ток нагрузки I0н = 1,0 А;
нестабильность выходного напряжения при изменении напряжения сети на ±10% не более Кп.н. = 1%;
электропитание – однофазная сеть;
напряжение U1 = 220 В;
частота fс = 50 Гц;
минимальная рабочая температура Tmin= +15°С;
максимальная рабочая температура Тmах = +35°С;
относительная влажность окружающего воздуха от 45 до 75;
атмосферное давление от 86 до 106 кПа (от 650 до 850 мм рт.ст.);
в качестве стабилизатора напряжения можно применить микросхему серии КР142;
Кст = 500.
I. ВЫБОР СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ
Так как UBЫX=12В и IВЫХ =1,0 А, выбирается микросхема КР142ЕН8В со следующими параметрами:
UВX=20B(Uвxmin= 18В и Uвх max= 35B);
Коэффициент нестабильности КHU = 0,05% , КHI= 1 %;
Коэффициент сглаживания пульсации Кст = 30 дБ, на частоте 1 кГц;
Микросхема представляет собой компенсационный стабилизатор напряжения с фиксированным выходным напряжением, выполненный по планарной диффузионной технологии с изоляцией диэлектриком.
Прибор рассчитан на длительную эксплуатации в жестких условиях: при температурах окружающей среды от +80°С до +125°С, пониженном атмосферном давлении до 5 мм рт.ст., минимальная наработка – 50000 часов, сохраняемость – 25 лет.
Основная типовая схема включения рассматриваемого стабилизатора представлена на рис. 1.1. При всех условиях эксплуатации ёмкость конденсатора С1 не должна быть менее 10 мкФ, С2 не менее 2,2 мкФ.
Рис. 1.1. Типовая схема включения стабилизатора напряжения типа КР142ЕН8В
II. ВЫБОР СХЕМЫ ВЫПРЯМЛЕНИЯ
Для выбора схемы выпрямления необходимо знать мощность в нагрузке
Т.к. она меньше 100 ВА, а выпрямленное напряжение меньше 300 В и ток 1 А, можно использовать двухполупериодную схему выпрямления с выводом средней точки.
Рис.2.1. Двухполупериодная схема выпрямления с выводом средней точки
В первый полупериод, когда потенциал точки А будет положительным, а потенциал точки В отрицательным, диод VD1 будет открыт и ток протекает через диод VD1, нагрузку RH и верхнюю половину второй обмотки в направлении, показанном сплошными стрелками. Диод VD2 в это время закрыт, ток через него не течет и он находиться под обратным напряжением.
В идеализированной схеме отсутствуют потери в диодах и трансформаторе, поэтому форма выпрямленного напряжения u0повторяет форму напряжения на работающих половинах вторичной обмотки трансформатора, другими словами график u0 отбивающей положительных полусинусоид графиков
В каждый полупериод u2 по половине вторичной обмотки трансформатора, диоду и нагрузке протекают равные между собой токи, причем ток в идеализированной схеме определяются только сопротивлением нагрузке и равен u0/Rн.
Как следует из рис. 2.1 а, токи
Форма графика uобр требует дополнительных объяснений. Каждую половину периода один из диодов схемы закрыт и к его электродам приложено обратное напряжение, которое равно разности потенциалов между анодом и катодом этого диода. В первую половину периода закрытым VD2. Потенциал его анода равен потенциалу точки В, который определяется отрицательной полусинусоидой
Иобр ип = 2·u2m
Преимущества двухпроводной схемы по сравнению с однопроводной состоят в следующем:
1. Значительно уменьшается габаритные и масса трансформатора (следствии лучшего использования обмоток и отсутствия подмагничивание магнитопровода);
2. Амплитудное значение тока через диод вдвое меньше;
3. Значительно уменьшаются габариты и масса сглаживающего фильтра (вследствие увеличения в двое основной частоты пульсации, то есть
Недостатками схемы являются:
1. Необходимость вывода средней (нулевой) точки вторичной обмотки трансформатора;
2. Наличие в схеме двух диодов в место одного.
III. ВЫБОР СХЕМЫ СГЛАЖИВАЮЩЕГО ФИЛЬТРА
а) Входным элементом фильтра выбирается дроссель Iон= 1,0 А;
б) Схема оставшейся части фильтра определяется коэффициентом сглаживания фильтра выпрямителя, т.е.
Поскольку коэффициент сглаживания фильтра в 2,5 раза меньше, то исходя из наилучших массогабаритных характеристик фильтра, его составляют из одного звена LC. Таким образом, если дроссель выбран в качестве входного элемента, оставшаяся часть фильтра представляет собой конденсатор С.
|
IV. НАПРЯЖЕНИЕ НА ВЫХОДЕ СХЕМЫ