ГОУ ВПО
ДВГУПС
Кафедра ”ЭТЭЭМ”
КУРСОВОЙ ПРОЕКТ
На тему: ”Расчет импульсного источника вторичного электропитания”.
КП. 61352. 000. 648.
Выполнил: Щербин Р.В.
Проверил: Сайфутдинов Р.Х.
Хабаровск 2009
Содержание
1.1 Обобщенная структурная схема "безтрансформаторного" ИВЭП
1.2 Функциональная схема практического "безтрансформаторного" ИВЭП
1.3 Сетевой выпрямитель с фильтрами
1.5 Работа магнитопровода силового трансформатора
1.7 Схема управления силовым транзистором
2. Расчет "безтрансформаторного" ИВЭП. Исходные данные
2.2 Выбор типа диодов VDc1…VDc4 сетевого выпрямителя
2.3 Определение емкости сглаживающего конденсатора сетевого выпрямителя конденсатора Снч:
2.4 Определение максимальной скважности управляющих импульсов
2.5 Расчёт силового трансформатора TV
2.6 Выбор выпрямительного диода VDв
2.7 Определение параметров элементов схем управления
2.8 Определение параметров элементов демпфирующей цепи силового каскада
2.9 Определение КПД источника вторичного питания
Список используемой литературы
Источник вторичного электропитания (ИВЭП) является обязательным функциональным узлом практически любой электронной аппаратуры. Как электротехническое устройство он обеспечивает постоянными питающими напряжениями от единиц до десятков-сотен вольт транзисторные устройства и интегральные схемы.
До настоящего времени большая часть источников электропитания представляет собой громоздкие электротехнические устройства, осуществляющие силовое преобразование энергии напряжения на относительно низкой частоте – 50 Гц, а регулирование или стабилизация выходного напряжения производится линейными методами. Это обстоятельство приводит к большой материалоемкости и низкой эффективности ИВЭП.
В настоящее время в современной электронной аппаратуре практически отсутствуют подобные низкоэффективные источники электропитания. Произошел переход на высокочастотные импульсные методы преобразования энергии переменного и постоянного напряжений, что позволило снизить расход электротехнической меди в несколько десятков раз и принципиально исключить использование трансформаторной стали. Удельная выходная мощность современных ИВЭП составляет (200…500) Вт/кг, а КПД достигает (70…90)% в широком диапазоне изменения первичного напряжения. В данном курсовом проекте предлагается рассчитать источник вторичного электропитания (ИВЭП) с выходным напряжением
1.1 Обобщенная структурная схема "безтрансформаторного" ИВЭП
Под "безтрансформаторным" понимается ИВЭП, первичным у которого является переменное напряжение низкой частоты, а выходными (напряжениями нагрузки) являются постоянные напряжения, требующиеся для питания электронной аппаратуры.
Обобщенная структурная схема "безтрансформаторного" ИВЭП приведена на рис. 1.
Рис. 1. Обобщенная структурная схема "безтрансформаторного" ИВЭП.
Здесь обозначения соответствуют:
В курсовом проекте принято, что первичным для ИВЭП является переменное напряжение
Величины выходных напряжений ИВЭП определяются выбранной для электронных приборов элементной базой.
Функции структурных узлов Сет.В и Сгл.Ф заключаются в выпрямлении переменного напряжения сети
Первая из них заключается в электрической изоляции выходных напряжений от
Вторая функция ИПН заключается в необходимости стабилизации напряжений
1.2 Функциональная схема практического "безтрансформаторного" ИВЭП
Функциональная схема "безтрансформаторного" ИВЭП с использованием ОПНО приведена на рис. 2.
Рис.2. Функциональная схема ИВЭП.
Здесь обозначения функциональных узлов соответствуют: ФВФ — блок высокочастотных и низкочастотных фильтров и сетевой выпрямитель; TV -силовой трансформатор; S - силовой ключ, включаемый и выключаемый схемой управления СУ (сигнал
1.3 Сетевой выпрямитель с фильтрами
На рис. 3. приведена схема сетевого выпрямителя ФВФ с фильтрующими элементами.
Рис.3. Схема сетевого выпрямителя ФВФ.
Мостовой выпрямитель напряжения сети