1.Устройство обнаружения сигналов в условиях априорной неопределённости.
1.1. Проблема обнаружения сигналов в условиях априорной неопределённости. Основные понятия и определения.
Обработка сигналов в информационной системе реализуется с помощью совокупности математических операций (алгоритмов), которые необходимо выполнить для получения того или иного результата. Типичными задачами, возлагаемыми на систему обработки радиотехнической информации, являются:
- обнаружение сигналов с заданными допустимыми вероятностями ошибочных решений, обусловленных помехами;
- измерение (оценка) параметров сигналов с заданными допустимыми погрешностями;
- разрешение сигналов, т.е. обнаружение (с заданными вероятностями ошибок) одного сигнала и оценку (с заданными погрешностями) его параметров, при наличии других сигналов;
- распознавание сигналов, т.е. отнесение их, с заданными вероятностями ошибок, к тому или иному классу.
Перечисленные операции в той или иной форме присущи многим информационным системам, поэтому методы, рассматриваемые в нашем курсе, могут иметь широкое применение. Однако для конкретности и наглядности мы будем рассматривать радиолокационную систему, на которую возложен контроль ситуации в некоторой области пространства. (Другим возможным примером может служить аппаратура потребителя спутниковой радионавигационной системы).
В современной теории обзорная радиолокационная система рассматривается как система массового обслуживания, на вход которой воздействует случайный поток целей, а также помех искусственного и естественного происхождения, статистические характеристики которых могут быть априори неизвестны и изменяться в ходе наблюдения. Отсутствие полной информации о свойствах полезных сигналов и помех является существенной особенностью рассматриваемых систем,что дает основание для выделения задач обработки сигналов в условиях априорной неопределенности в самостоятельный раздел курса.
Будем в дальнейшем полагать, что информация, подлежащая
Примером измеряемого (информативного) параметра может служить задержка радиолокационного сигнала, несущая информацию о дальности до цели, примером неинформативного (мешающего) – начальная фаза сигнала. Отметим, что в зависимости от постановки задачи один и тот же параметр сигнала может рассматриваться и как измеряемый и как мешающий. Примером может служить доплеровский сдвиг частоты отраженного сигнала, который является информативным, если ставится задача оценки радиальной скорости цели, и мешающим, если такая оценка не требуется.
В общем случае оптимальный алгоритм обработки информации состоит в фильтрации вектора
Широко применяемое в настоящее время упрощение оптимального алгоритма состоит в его разбиении на ряд этапов, причем для обработки на каждый последующий этап передается только часть информации, относящаяся к тем областям пространства параметров, которым соответствуют максимумы (“пики”) АВ. Очевидно, что такая селекция, с одной стороны, устраняет значительную часть избыточной информации, с другой – может привести к утере части полезной информации, что необходимо учитывать при разбиении процесса обработки на этапы.
Общепринятым в настоящее время является деление процесса обработки радиолокационной информации на три этапа:
- первичную обработку, которая включает в себя обнаружение целей на фоне помех, измерение их координат, разрешение целей, а также кодирование полученных данных и их преобразование в стандартные сообщения для передачи на последующие этапы обработки;
- вторичную обработку, включающую в себя обнаружение траекторий целей по совокупности единичных замеров, а также идентификацию вновь появившихся целей, обнаружение маневров целей, сглаживание и экстраполяцию траекторий;
- третичную обработку, т.е. объединение информации, полученной от разных источников, например РЛС, образующих радиолокационное поле.
Очевидно, что наибольший объем информации и скорость ее поступления характерны для этапа обнаружения сигнала. Необходимость обеспечения большого быстродействия требует создания специальных устройств обработки информации, которые и являются предметом данного курса.
Прежде чем перейти к его изложению, введем и обсудим ряд необходимых понятий и определений.
Каждая выборка
Изложенная трактовка задачи различения статистических гипотез в условиях априорной неопределенности называется параметрической, поскольку она предполагает, что функциональный вид распределений , задан. Гипотезы
и
в такой постановке формулируются относительно параметров функций правдоподобия; априорная неопределенность (при сложных гипотезах) также сводится к отсутствию информации о тех или иных параметрах этих функций. Возложен иной подход, когда функции правдоподобия считаются не известными, определены только их некоторые свойства, например, непрерывность, унимодальность и т.п. Методы обнаружения сигналов при такой непараметрической постановке рассматриваются в других курсах.
Основной задачей теории обнаружения является отыскание решающего правила