Вышеизложенный подход, предполагает только вынесение решения в пользу одной из гипотез и не предусматривает никаких либо решений в отношении самой процедуры наблюдения. Наряду с ним известен класс решающих правил, называемых последовательными, для которых множество решений кроме
Рассмотренные решающие правила относятся к классу детерминированных (нерандомизированных), поскольку они устанавливают однозначную связь между попаданием выборки в область
или
и принятием соответствующего решения
или
. В принципе возможен другой подход, когда принятие того или иного решения связывается не только с попаданием выборки в соответствующую область, но и с результатом некоторого случайногодополнительногоэксперимента,несвязанногосрезультатаминаблюдения. Такой подход иногда упрощает анализ и синтез решающих правил, однако на практике он не применяется, поскольку доказана теорема, что любому рандомизированному решающему правилу может быть сопоставлено нерандомизированное правило, по меньшей мере не уступающее ему в эффективности. Следует обратить внимание, что хотя при последовательном анализе решение о продолжении или завершении наблюдения зависит от случайного результата наблюдения, последовательные правила не являются рандомизированными т.к. последние, как уже указывалось, предполагают проведение дополнительного эксперимента, несвязанного с результатами наблюдения.
1.2. Критерии оптимальности решающих правил.
Проектирование устройств обработки обычно начинается с поиска оптимального алгоритма, который обеспечивает наилучшие показатели качества, с точки зрения некоторого задаваемого разработчиком системы критерия, учитывающего (с тем или иным весом) затраты на получение информации, ее достоверность, объем и другие факторы. Однако оптимальный алгоритм может быть найден не всегда, кроме того, его реализация может оказаться неприемлемо сложной. В таких случаях ставится задача поиска квазиоптимального алгоритма и оценки его качества.
Выбор критерия оптимальности при анализе и синтезе устройств обработки информации, вообще говоря, зависит от точки зрения разработчика на назначение системы и особенности, возложенных на нее задач и не может быть строго регламентирован. Тем не менее, существуют общепринятые критерии, которые правильно отражают существенные стороны функционирования систем, допускают однозначную математическую формулировку, и в то же время достаточно наглядны и соответствуют здравому смыслу.
Применительно к проблеме фильтрации сигнала на фоне шумов в качестве критерия оптимальности часто принимаютмаксимум отношения сигнал/помеха на выходе соответствующего устройства. Этот критерий может считаться адекватным для устройств детектирования, дискретизации и накопления сигнала. Однако с точки зрения задач, решаемых на основании выходных данных этих устройств – обнаружения сигнала и оценки их параметров – критерий максимума отношения сигнал/шум является слишком “грубым” т.к. не учитывает ряд существенных особенностей этих задач.
1.3. Байесовский критерий оптимальности.
Среди используемых в современной теории обнаружения наиболее общим является критерий минимума среднего (байесовского) риска, в основу которого положены следующие рассуждения.
Вследствие случайного характера помех, а также возможных флуктуаций параметров сигналов, вынесение абсолютно достоверного решения при конечном времени наблюдения невозможно, т.е. решения
-
-
Перечисленные ситуации образуют полную группу событий, сумма вероятностей которых =1:
Сопоставим каждому ошибочному решению некоторую стоимость (риск)
Оптимальным считается решающее правило, обеспечивающее минимум среднего риска (байесовский критерий оптимальности). Правило, обладающее таким свойством, называют байесовским.
Подчеркнем, что для расчета величины байесовского риска необходима полная априорная информация о совместных вероятностях