Аналогічно для коефіцієнта шуму модуля пасивної ФАР:
Поділивши рівняння ( 7) на ( 6) ми одержимо енергетичний виграш, який забезпечить АФАР у порівнянні з пасивною ФАР:
Максимально великий виграш реалізується при достатньо великому коефіцієнті
Відповідний виграш можна одержати при:
Наприклад:
Максимальний виграш
|
Рис. 10. Приймальний модуль АФАР
Однак певна будова модуля АФАР може бути використана тільки для певного класу приймальних сигналів. Як наголошувалось, призначення АФАР в багатьох випадках виявляє схемну побудову модуля. Наприклад, в самофазуючихся антенних решітках (додавання всіх елементів в них відбувається незалежно від фазового фронту падаючої хвилі) приймальні модулі побудовані з використанням фазової автопідстройки частоти. На рис. 11 представлені дві функціональні схеми таких модулів.
|
Рис. 11,а. Схема модуля АФАР
|
Рис. 11,б. Схема модуля АФАР
В модулі по схемі рис. 11,а фаза опорного сигналу задається спеціальним опорним генератором, частота
В модулі по схемі рис. 11,б в якості опорного використовується сигнал з виходу суматора вихідних напруг всіх модулів. Не дивлячись на те, що в опорному сигналі такого модуля є шуми (опорним сигналом являється прийнятий і усереднений сигнал) перешкодостійкість його може бути не гірше ніж модуля за схемою рис. 11,а, що пояснюється можливістю звуження шумової смуги системи ФАПЧ, так як в даному випадку доплерівський зсув частоти присутній в опорному сигналі і компенсації підлягають лише нестабільність частоти передавача та повільне зміщення фази сигналів в кожному модулі.
Іншим прикладом, коли функціональна схема модуля і параметри вхідних в нього вузлів визначаються призначенням АФАР, являється прийомо-передавальний модуль перевипромінюючої АФАР. Як віломо із теорії ФАР, для роботи перевипромінюючої ФАР необхідно створити у випромінювачах фазове розподілення комплексно спряжене фазовому розподілу для прийнятого сигналу, яке можливо отримати різними способами.
На рис. 12 приведена функціональна схема прийомо-передавального модуля, в якому спряження фазових зсувів здійснюється за допомогою перетворення частоти прийнятого сигналу.
|
Рис. 1 Функціональна схема прийомо-передавального модуля АФАР
На виході змішувача
Якщо частота гетеродина
Розглянуті ФАР мають значні переваги перед звичайними антенами, що і було доведено вище, але перспективна тропосферна станція з цифровою обробкою інформації передбачає більш досконалий антенний пристрій.
Ключовим рішенням стало використання (вперше для вирішення такої задачі) прийомо-передавальної ЦАР, в якій здійснюється цифрове формування променів, характеристики направленості. На сучасних ЦАР при 128 активних дипольних елементах комплект процесорів обробки сигналів дозволяє формувати одночасно 250-300 променів, звичайно для ТРС такі можливості не потрібні, отже є можливість зменшити кількість елементів ЦАР і обчислювальні потужності процесорів, що звичайно підвищить надійність станції, а головне зменшить вартість обладнання.
Цифрове формування променів – єдина на сьогодні технологія, що дозволяє ефективно реалізувати динамічну адаптацію постійного зв’язку на основі оперативного перенаправлення цифрових прийомо-передавальних променів з метою адекватного реагування на зміни тропосфери.
Група променів, що синтезується, наприклад по алгоритму швидкого перетворення Фур’є, або за допомогою класичних процедур дискретного Фур’є аналізу, є по суті сукупністю «просторово-частотних фільтрів», кожен з яких пропускає строго визначений набір сигналів і подавляє інші, одночасно приймаємих в широкому просторовому секторі як перешкоди.