Смекни!
smekni.com

Полупроводники 3 (стр. 2 из 8)

Рис. 1. Заполнение энергетических зон при абсолютном нуле температуры: а — в диэлектриках; б — в металлах; разрешенные зоны заштрихованы, заполненные зоны или их части заштрихованы дважды.

б) Различные состояния электрона в пределах каждой зоны характеризуются, помимо энергии, квазиимпульсомр, принимающим любые значения в пределах некоторых ограниченных областей в импульсном пространстве (р-пространстве), называются зонами Бриллюэна. Форма и размеры зоны Бриллюэна определяются симметрией кристалла и его межатомными расстояниями d. Величина рмакс£h/d, где h — Планка постоянная. Уравнение движения электрона проводимости в кристалле похоже на уравнение движения электрона в вакууме с той, однако, существенной разницей, что соотношения E = р2/m0 и up= p/m0(m0 — масса свободного электрона, E— его энергия, р — импульс, u — скорость) заменяются более сложной и индивидуальной для каждого кристалла и каждой его энергетической зоны зависимостью E (p): up = .

в) При абсолютном нуле температуры электроны заполняют наинизшие уровни энергии. В силу Паули принципа в каждом состоянии, характеризующемся определённой энергией, квазиимпульсом и одной из двух возможных ориентаций спина, может находиться только один электрон. Поэтому в зависимости от концентрации электронов в кристалле они заполняют несколько наинизших разрешенных зон, оставляя более высоко лежащие зоны пустыми. Кристалл, у которого при Т = 0 К часть нижних зон целиком заполнена, а более высокие зоны пусты, является диэлектриком или Полупроводники (рис. 1, а), металл возникает лишь в том случае, если хотя бы одна из разрешенных зон уже при Т = 0 К заполнена частично (рис. 1, б).

В Полупроводники и диэлектриках верхние из заполненных разрешенных зон называются валентными, а наиболее низкие из незаполненных — зонами проводимости. При Т > 0 К тепловое движение «выбрасывает» часть электронов из валентной зоны в зону проводимости (т. е. разрушает часть химических связей; см. выше). В валентной зоне при этом появляются дырки (рис. 2).

Рис. 2. Заполнение энергетических зон в полупроводнике; показаны только валентная зона и зона проводимости; чёрные кружочки — электроны в зоне проводимости, белые — дырки в валентной зоне.

Носители тока в Полупроводники сосредоточены, как правило, в довольно узких областях энергий: электроны — вблизи нижнего края (дна) зоны проводимости Ec, на энергетических расстояниях ~kT от неё (kT — энергия теплового движения); дырки — в области такой же ширины вблизи верхнего края (потолка) валентной зоны Eu. Даже при самых высоких температурах (~ 1000°) kT ~ 0,1 эв, а ширина разрешенных зон обычно порядка 1—10 эв. В этих узких областях ~kT сложные зависимости E (p), как правило, принимают более простой вид. Например, для электронов вблизи дна зоны проводимости:

Здесь индекс i нумерует оси координат, p0i — квазиимпульсы, соответствующие Ec в зоне проводимости или Eu в валентной зоне. Коэффициенты mэi называются эффективными массами электронов проводимости. Они входят в уравнение движения электрона проводимости подобно m0 в уравнении движения свободного электрона. Всё сказанное справедливо для дырок валентной зоны, где .

Эффективные массы электронов mэи дырок mд не совпадают с m0 и, как правило, анизотропны. Поэтому в разных условиях один и тот же носитель ведёт себя как частица с разными эффективными массами. Например, в электрическом поле Е, направленном вдоль оси oz, он ускоряется, как частица с зарядом е и массой mэz, а в магнитном поле H, направленном вдоль oz, движется по эллипсу в плоскости ^Н с циклотронной частотой:

С квантовой точки зрения такое циклическое движение электронов и дырок в кристалле с частотой wс означает наличие уровней энергии (так называемых уровней Ландау), отстоящих друг от друга на wс. Значения эффективных масс электронов и дырок в разных Полупроводники варьируются от сотых долей m0 до сотен m0.

Ширина запрещенной зоны DE (минимальная энергия, отделяющая заполненную зону от пустой) также колеблется в широких пределах. Так, при Т ® 0 К DE = 0,165 эв в PbSe, 0,22 эв в InSb, 0,33 эв в Te, 0,745 эв в Ge, 1,17 эв в Si, 1,51 эв в GaAs, 2,32 эв в GaP, 2,58 эв в CdS, 5,6 эв в алмазе, а серое олово является примером Полупроводники, у которого DE = 0, т. е. верхний край валентной зоны точно совпадает с нижним краем зоны проводимости (полуметалл). Более сложные соединения и сплавы Полупроводники, близких по структуре, позволяют найти Полупроводники с любым DE от 0 до 2—3 эв.

Зонная структура наиболее полно изучена для алмазоподобных Полупроводники, в первую очередь Ge, Si и соединений AIIIBV; многое известно для Te, соединений AIVBVI и др. Весьма типичной является зонная структура Ge (рис. 3), у которого вблизи своего верхнего края соприкасаются две валентные зоны. Это означает существование двух типов дырок — тяжёлых и легких с эффективными массами 0,3 m0 и 0,04 m0. На 0,3 эв ниже расположена ещё одна валентная зона, в которую, однако, как правило, дырки уже не попадают. Для зоны проводимости Ge характерно наличие трёх типов минимумов функции E (р): L, Г и D. Наинизший из них — L-минимум, расположенный на границе зоны Бриллюэна в направлении кристаллографической оси [111]. Расстояние его от верхнего края валентной зоны и есть ширина запрещенной зоны DE = 0,74 эв (при температурах, близких к абсолютному нулю; с ростом температуры DE несколько уменьшается). Эффективные массы вблизи L-минимума сильно анизотропны: 1,6m0 для движения вдоль направления [111] и 0,08m0 для перпендикулярных направлений. Четырём эквивалентным направлениям [111] (диагонали куба) в кристалле Ge соответствуют 4 эквивалентных L-минимума. Минимумы Г и Д расположены соответственно при р = 0 и в направлении оси [100], по энергии выше L-минимума на 0,15 эв и 0,2 эв. Поэтому количество электронов проводимости в них, как правило, гораздо меньше, чем в L-минимуме.

Рис. 3. Схема энергетических зон Ge; DE — ширина запрещенной зоны, L, Г и D — три минимума зависимости E(р) в зоне проводимости вдоль осей [100] (D и Г) и [111] (L).

Зонные структуры др. алмазоподобных Полупроводники подобны структуре Ge с некоторыми отличиями. Так, в Si, GaP и алмазе наинизшим является D-минимум, а в InSb, InAs, GaAs — Г-минимум, причём для последнего характерны изотропные и весьма малые эффективные массы (0,013 то в InSb и 0,07 то в GaAs). Структуры валентных зон у многих алмазоподобных Полупроводники подобны, но могут существенно отличаться от Полупроводники др. групп.

Некристаллические полупроводники. В жидких, аморфных и стеклообразных Полупроводники отсутствует идеальная кристаллическая упорядоченность атомов, но ближайшее окружение каждого атома приблизительно сохраняется (см. Дальний порядок и ближний порядок). Однако ближний порядок не всегда бывает таким же, как и в кристаллической фазе того же вещества. Так, в ковалентных Полупроводники (Ge, Si, AIIIBV) после плавления у каждого атома становится не по 4 ближайших соседа, а по 8, по той причине, что ковалентные связи, весьма чувствительные как к расстоянию между атомами, так и к взаимной ориентации связей, разрушаются интенсивным тепловым движением атомов в жидкости. В результате такой перестройки ближнего порядка все эти вещества в расплавах становятся металлами (см. Жидкие металлы).

Однако в др. Полупроводники (Те, Se, AIVBVI и др.) ближний порядок при плавлении, по-видимому, не изменяется и они остаются Полупроводники в расплавах (см. Жидкие полупроводники). В применении к ним, а также к аморфным Полупроводники представления зонной теории требуют существенных изменений и дополнений. Отсутствие строгой упорядоченности в расположении атомов создаёт локальные флуктуации плотности и межатомных расстояний, которые делают не вполне одинаковыми энергии электрона вблизи разных атомов одного и того же сорта. Это затрудняет переход электрона от атома к атому, т.к. такие переходы связаны теперь с изменением энергии. Это обстоятельство не приводит к каким-либо качественным изменениям для носителей, энергии которых лежат в разрешенных зонах довольно далеко от их краев, поскольку они имеют достаточно большие энергии для того, чтобы сравнительно легко преодолевать энергетические барьеры между разными атомами одного сорта. Однако картина качественно изменяется для носителей с энергиями вблизи краев зон. У них уже не хватает энергии для преодоления разностей энергии между соседними атомами и поэтому они могут стать локализованными, т. е. потерять способность перемещаться. В результате возникают электронные уровни в диапазоне энергий, который в кристалле соответствовал бы запрещенной зоне. Находящиеся на этих уровнях электроны локализованы вблизи соответствующих флуктуаций, и к ним уже неприменимы такие понятия зонной теории, как квазиимпульс и др. Меняется и само понятие запрещенной зоны: теперь уже эта область энергий также заполнена электронными состояниями, однако природа этих состояний иная, чем в разрешенных зонах, — они локализованы (псевдозапрещённая зона).

Оптические свойства полупроводников. Со структурой энергетических зон Полупроводники связан механизм поглощения ими света. Самым характерным для Полупроводники процессом поглощения является собственное поглощение, когда один из электронов валентной зоны с квазиимпульсом р, поглощая квант света, переходит в незаполненное состояние какой-либо из зон проводимости с квазиимпульсом р'. При этом энергия фотона w (w= 2pс/l) (w — частота света, l — его длина волны) связана с энергиями электрона в начальном Ен и конечном Ек состояниях соотношением: w = Ек (p’) — Ен (p), (5)