
Данный фильтр является неимпульсивным, и значение выходного сигнала зависит только от значений входного сигнала и от предыдущих значений.
V. Фильтры с БИХ.
Фильтры с БИХ математически списываются следующим образом:

для g=1
тогда импульсный отклик будет rn.
Этот тип отклика называется экспонициальный.
Если r
0, тогда даже при нулевом значении входного сигнала, выходной сигнал не будет нулевым.Если r< 1, тогда выходное значение сигнала на выходе фильтра будет осцелировать.
Если r> 1, выходное значение может бесконечно расти, то тогда этот фильтр будет неустойчивый, и приходим к выводу, что эти фильтры называются «с бесконечно импульсными характеристиками».
Схема такого фильтра выглядит следующим образом:
X(n) Y(n)

Этот фильтр еще называется рекуррентный фильтр с БИХ первого порядка.
Схема фильтра n – го порядка выглядит следующим образом:
X(n) Y(n)

Общая форма фильтров:

Если использовать Z–преобразования, тогда фильтр можно описать следующей формулой:

VI. Передаточные функции фильтров.
Передаточные функция фильтра называется отношением выходного сигнала на входной сигнал.
- передаточная функция.С учетом формул линейного фильтра получаем:
- для 1-го фильтра (порядок)Порядок фильтра определяется от N или М.
VII. Нули и полюса фильтров.
Если исследовать передаточную характеристику фильтров, то можно обнаружить два экстремальных варианта:
1. Числитель = 0.
2. Знаменатель с 0.
1) Если числитель = 0, тогда передаточная характеристика равна 0 и можно получить нулевые значения фильтра. Полоса затухания – нулевой фильтр.
2) Если же знаменатель =0, тогда передаточная характеристика фильтра бесконечная и тогда получаем полюса фильтров или резонансные частоты фильтров.
VIII. Фильтр 1-го порядка с одним нулем и с одним полюсом.
Самый простой фильтр, который имеет один полюс и один нуль можно описать следующим образом:

Передаточная характеристика этого фильтра будет следующей:
- и этот фильтр имеет один нуль.
когда Z = - аСхема фильтра выглядит следующим образом:
X(n) g Y(n)

Если рассматривать частотные характеристики этого фильтра, то они будут выглядеть так:

Фильтр с одним полюсом:

Частотные характеристики этого фильтра выглядят следующим образом:
X(n) Y(n)

A A

r=0.99 r=0.5 r=0.25 f r=-0.25 r=-0.5 r=-0.99 f
IX. Фильтры 2-го порядка с нулями и полюсами.
Фильтр 2-го порядка описываются уравнением:

Тогда передаточная характеристика этого фильтра выглядит следующим образом:
- два нуля и два полюса.
- нули.
- полюса.Если пропускать нули через фильтр 2-го порядка, то получится следующая картина:
W Полюс нуль
X. Топология цифровых фильтров.
Топология говорит о том, как можно расположить линии задержки с тем сигналом, который нам необходим.
Если система линейная, то порядок включения целей в фильтр не имеет значения.
Пример:
X(n) Y(n)

II семестр.
Тема: Методы использования цифровой обработки сигналов для создания практических систем распознавания речи.