, (1.6)
где
В термопарах используют проводники, имеющие большой и стабильный в рабочем диапазоне температур коэффициент термо-э.д.с.
2. Описание экспериментальной установки
|
Внимание: все измерения по последующим пунктам проводятся одновременно.
3.1. Определение удельного электрического сопротивления проводников и вычисление aR, ar.
Проводники, помещенные в термостат, поочередно подключить к входным зажимам омметра и замерить их сопротивления сначала при комнатной температуре, а затем при повышении температуры до 90 °С с шагом 10 оС. Результаты измерений записать с максимальной точностью в табл.1.2.
Таблица 1.2
проводник | q, oС | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
медь | R1 | ||||||||
r1 | |||||||||
aR1 | |||||||||
ar1 | |||||||||
Константан | R2 | ||||||||
… | |||||||||
… | … |
3.2. Определение зависимости термо-э.д.с термопар от температуры.
Одновременно с нагреванием проводников нагреваются помещенные в термостат спаи трех термопар. Холодные концы термопар поочередно подключить переключателем П1 к милливольтметру. Значения измеренных термо-э.д.с. занести в табл. 1.3.
q, °С | ET, мВ | ||
Термопара | |||
медь – константан | хромель – алюмель | хромель – копель | |
20 | |||
… | |||
90 |
1. Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы измерений.
2. По данным измерений табл. 1.1 построить график зависимости R(q). По графикуR(q), а также по формулам (1.3), (1.5) рассчитать и занести в таблицу 1.1 значения aR,ar, и r для каждого из исследованных проводников. По данным таблицы 1.1 построить графики зависимостей R(q), r(q), aR(q) и ar(q).
3. Рассчитать длины свободного пробега электронов для исследованных проводников при комнатной температуре.
4. По данным таблицы 1.2 и по формуле (1.6) рассчитать средние значения относительной удельной термо-э.д.с. для исследованных термопар. построить графики зависимостей ЕТ(q).
5. Привести краткое описание исследованных в работе материалов (химический состав, электрические свойства, области применения).
6. Дать краткие выводы по результатам работы.
1. Какие материалы относятся к классу проводников?
2. Чем обусловлена высокая электропроводность проводников?
3. Как можно классифицировать проводники?
4. Какие факторы и почему влияют на удельное электрическое сопротивление?
5. Что такое температурный коэффициент удельного сопротивления?
6. Для каких материалов и почему важно учитывать линейное расширение при нагревании?
7. Что такое термо-э.д.с., в чем причина ее возникновения?
8. Исходя из каких соображений подбираются материалы для термопар?
Работа 2.Исследование свойств терморезисторов
Цель работы:
а) определение зависимости сопротивления терморезисторов от температуры;
б) определение энергии активации и коэффициента температурной чувствительности полупроводника;
в) оценка величины постоянной времени тепловой инерции терморезисторов;
г) построение динамических вольтамперных характеристик терморезисторов.
Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры.
Удельная электрическая проводимость полупроводников
где
В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.
Подвижность носителей при нагревании изменяется сравнительно слабо (по степенному закону, ~
где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника; DЭ – энергия активации примесей (для примесных полупроводников) или ширина запрещенной зоны (для собственных полупроводников), k – постоянная Больцмана.
постоянная В =DЭ/k носит название коэффициент температурной чувствительности и приводится в паспортных данных на терморезистор. экспериментально коэффициент температурной чувствительности определяют по формуле
где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2.
Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления aR. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный aR и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение aR приводится для температуры 20 оС. Значения aR терморезисторов для любой температуры в диапазоне 20…150 оС можно определить по формуле:
терморезистор характеризуется определенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента (площади излучающей поверхности). Тепловая инерция оценивается постоянной времениt – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е (2,7183) раз.
Если терморезистор, имеющий температуру qо, поместить в среду с температурой qс¹qо,то его температура будет изменяться с течением времени по показательному закону:
На рис.2.2 показан процесс изменения температуры терморезистора при его остывании.
С остыванием терморезистора сопротивление его увеличивается (рис. 2.3). Знание зависимостей R(q) (рис.2.1) и R(t) (рис. 2.3) позволяет, задаваясь значениями R и определяя по кривым рис. 2.1 и 2.3 соответствующие им значения q и t, построить зависимость q(t) и определить t.