Для расчёта вероятности ошибки на выходе приёмника воспользуемся формулой:
Построим зависимость вероятности ошибки от отношения мощности сигнала к мощности шума (h). Результаты расчетов сведены в таблицу 3.1 График зависимости Рош от h2, изображен на рисунке 3.1
Таблица №3.1
РС мВт | 0 | 1 | 2 | 2,8 | 3 | 4 | 5 | 6 | 10 |
h2 | 0 | 1 | 2 | 2,8 | 3 | 4 | 5 | 6 | 10 |
h | 0 | 1 | 1,414 | 1,67 | 1,732 | 2 | 2,236 | 2,449 | 3,1623 |
|
Рисунок 4.1. – Условная вероятность.
где W(S0/Z) и W(S1/Z)- условные плотности вероятности появления сигналов “0” и “1” соответственно, при наличии смеси: сигнал + шум.
S0 и S1 – соответственно ожидаемые (или точно известные) значения сигнала “1” и “0”.
Вероятность события P(S) = ∫ W(S/Z)dt. Тогда для нормального закона распределения плотности условных вероятностей событий будем иметь:
где G – среднеквадратичное значение уровня шума. Найдём совместное решение этих уравнений в виде отношений правдоподобия:
взяв натуральные логарифмы от числителя и знаменателя:
Это выражение – наиболее классический алгоритм решения задачи оптимального приёма, соответствующая ему функциональная схема носит название идеального приёмника Котельникова.
|
Рисунок 4.2. – Идеальный приёмник Котельникова.
На рисунке 4.2. обозначены:
НЕ – инвертор (вычитающее устройство)
КВ – квадратор
∫ – интегратор
РУ – решающее устройство
т.о. оптимальный приёмник для разделения бинарных сигналов состоит из двух одинаковых ветвей, на которые заводятся ожидаемые (или известные) значения уровней сигналов “0” и “1” и решающее устройство перебрасывается в сторону большего значения среднего уровня мощности в той или иной ветви.
Но решение задачи возможно и другими способами:
Пологая
где Е1 = S12 – энергия сигнала “1”
Е0 = S02 – энергия сигнала “0”
В этом выражении решение оптимального приёма осуществляется за счёт перемножения смеси входного сигнала на известную функцию S0(t) и S1(t) с последующим накоплением (интегрированием). Такой способ приёма (по виду математической обработки) носит название корреляционного. Соответствующая сема на рисунке 4.3.
|
Рисунок 4.3.
Выражение представленное выше может быть ещё более упрощено, если ввести понятие разности сигналов S∆(t) = S1 – S0 тогда
где
Тогда функциональная схема одноканального оптимального приёмника бинарных сигналов будет иметь вид Рисунок 4.4.
|
Рисунок 4.4.
Решение задачи в пользу сигнала 1 будет в том случае, если сигнал на выходе интегратора > λ.
Обратим внимание, что функция корреляции
Таким образом, схема рисунок 4.4. для не полностью известного сигнала в точке приёма будет рисунок 4.5.
|
Рисунок 4.5.
Следует отметить, что задачей согласованного фильтра является не восстановление формы сигнала искаженной шумом, а получение одного отсчета, по которому можно было бы судить о присутствии или отсутствии на входе фильтра сигнала известной формы.
Сигналы «0» и «1» равны по амплитуде, но отличаются по частоте, при этом спектральные линии полезной информации различаются на p/2 (выполняется условие ортогональности) - S1 и SO комплексно сопряжены.
S1(t)=Acosw1t; S0(t)= Acosw0t; 0 < t < Т
Так как сигналы S1 и S2 взаимоортогональны, то их функция взаимокорреляции
BS1S0(0) = 0E1=Е0 EЭ=2Е1
Значит:
Окончательная формула:
Для оптимального приемника отношение мощностей сигнал/шум:
Для неоптимального приемника отношение мощностей сигнал/шум:
то есть оптимальный приемник дает четырехкратный выигрыш по мощности в сравнении с заданным неоптимальным.
5. Передача аналоговых сигналов методом ИКМ
Импульсная кодовая модуляция используется в цифровых системах передачи для передачи непрерывных и дискретных сообщений по дискретному каналу. Для того, чтобы согласовать параметры аналогового сигнала с параметрами дискретного канала необходимо преобразовать непрерывное сообщение в цифровой сигнал, сохранив при этом содержащуюся в сообщении информацию.
Первым этапом ИКМ является дискретизация по времени через интервалы Dt.(рис.5.1)
|
Рис. 5.1
Полученные отсчеты мгновенных значений квантуются (рис.5.2). Квантование представляет собой округление мгновенных значений до ближайших разрешенных уровней квантования. Разность между исходным сообщением и сообщением, восстановленным по квантованным значениям, называют шумом квантования. Погрешность при представлении сигнала e, не превышает половины шага квантования Db.
|
Рис.5.2
Полученная последовательность квантованных значений bкв(Dt) передаваемого сообщения кодируется, т.е. представляется в виде m–ичных кодовых комбинаций. Чаще всего в двоичном коде.
Определим число разрядов применяемого двоичного кода по заданному числу уровней квантования N по формуле:
128= 2n= 27 n = 7
т.е. кодовые комбинации для кодирования квантованных значений мгновенных отсчетов при количестве уровней квантования, равном 128, должны состоять из 7 разрядов. От числа разрядов кода n, а также от пик–фактора аналогового сигнала зависит отношение мощности сигнала к мощности шума квантования :