Смекни!
smekni.com

Теория автоматического управления Структурная схема (стр. 3 из 6)


Кос = 1.0

U(w) 0.96 0.967 1.02 1.025 0.93 0.48 -0.26 -0.52 -0.42 -0.29 -0.19
V(w) 0 -0.26 -0.46 -0.67 -1.0 -1.38 -1.23 -0.66 -0.3 -0.14 -0.07
w,рад/с 0 0.1 0.14 0.17 0.21 0.26 0.3 0.36 0.44 0.52 0.6

Кос = 20

U(w) 0.96 0.843 0.8 0.73 0.62 0.47 0.29 0.11 -0.03 -0.1 -0.11
V(w) 0 -0.27 -0.34 -0.42 -0.5 -0.57 -0.58 -0.53 -0.42 -0.28 -0.16
w,рад/с 0 0.01 0.013 0.017 0.023 0.03 0.04 0.05 0.07 0.09 0.12

Рис.6.3. Комплексная (а) и вещественная (б) частотные характеристики САУ рис.3.1 при входном воздействии DZ(t), Ку = 20 и различных значениях Koc.

Кос = 1.0

w,рад/с 0 0.1 0.17 0.21 0.26 0.3 0.36 0.52 0.6 1.1
A(w) 0.96 1.0 1.22 1.37 1.46 1.26 0.84 0.32 0.2 0.06
j(w),град 0 -15 -33 -47 -71 -102 -128 -154 -160 -170

Кос = 20

w,рад/с 0 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.12 0.16
A(ww) 0.96 0.89 0.8 0.74 0.65 0.54 0.42 0/3 0.2 0.11
j(w),град 0 -18 -39 -50 -63 -78 -94 -110 -124 -142

Рис.6.4. Амплитудная (а) и фазовая (б) частотные характеристики САУ рис.3.1 при входном воздействии DZ(t), Ку = 20 и различных значениях Koc.

Из рис.6.4,а видно, что при Кос = 1.0 АЧХ имеет ярко выраженный максимум при частоте wр = 0.26 рад/с. Это свидетельствует о колебательном характере переходной характеристики (см.рис.5.2).

Причём, колебательность составляет [1]:

Aмакс 1.46

G = ------------- = --------------- = 1,52.

А(о) 0.96

При этом время переходного процесса имеет значение

2p 2*3,14

tп» (1 ¸ 2) -------- = (1 ¸ 2) -------------- = 24 ¸ 48с

wр 0.26

и на этом интервале времени имеют место 1 ¸ 2 колебания. Время достижения первого максимума составляет

p 3.14

tмакс»---------- = ----------------- = 6с.

2wр 2*0.26

О повышенной колебательности САУ рис.3.1 при Кос = 1.0 свидетельствует также наличие отрицательного минимума у ВЧХ (рис.6.3,б). При этом перерегулирование имеет значение [1]:

1.18Uмакс - U(0) 1.18 * 1.025 - 0.96

< -------------------------------- 100% = ------------------------ *100% = 53.6%.

U(0) 0.96

Время переходного процесса определяется шириной характеристики U(w), ограниченной значением частоты wп (рис.6.3,б), при котором положительная часть U(w) становится меньше 0.2U(0) = 0.2*0.96 = 0.192. Величину wп называют интервалом положительности U(w). При этом

p 3.14

tп³ (1 ¸ 4) ------------- = (1 ¸ 4) -------------- = 12 ¸ 48с.

wп1 0.26

При Кос = 20 ВЧХ (рис.6.3,б) и АЧХ (рис.6.4,а) не имеют максимумов при w>0, что свидетельствует об отсутствии перерегулирования (см.рис.3.2). Однако, при этом существенно увеличивается (по сравнению с Кос = 1.0) время переходного процесса (wп2 < wп1) иуменьшается частотная полоса пропускания задающего воздействия (w£ 0.02 рад/с). Это может неблагоприятно сказаться на функционировании САУ, если задающее воздействие для неё будет формироваться автоматически как результат функционирования системы управления более высокого иерархического уровня. При высокой частоте изменения воздействия DZ(t) САУ (при Кос = 20) будет отрабатывать задания с большой погрешностью.

При ручном формировании задающего воздействия уменьшение полосы пропускания по нему и увеличение времени переходного процесса могут не иметь существенного значения. Поэтому целесообразно принять Кос = 20, что обеспечивает переходный процесс, близкий к экспоненциальному, как при воздействии DZ(t), так и при Df(t).

7. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПО РАСПОЛОЖЕНИЮ НУЛЕЙ И ПОЛЮСОВ ПЕРЕДАТОЧНОЙ ФУНКЦИИ В КОМПЛЕКСНОЙ ПЛОСКОСТИ

Качество процесса управления может быть оценено по расположению нулей и полюсов передаточной функции в комплексной плоскости.

Чем ближе к оси мнимых величин расположены полюсы (корни характеристического уравнения) и при этом вблизи этих полюсов нет нулей, тем больше амплитуда свободных составляющих переходного процесса. Сопряженные комплексные полюсы обуславливают наличие колебательной составляющей в процессе. Вещественная часть полюсов определяет быстроту затухания свободной составляющей, а мнимая часть - частоту колебаний. По мере увеличения мнимой и уменьшения вещественной частей комплексного корня увеличивается колебательность процесса.

Если передаточная функция замкнутой САУ не имеет нулей, то время переходного процесса может быть определено по значению вещественной части полюса, наиболее близко расположенного к оси мнимых величин

LnN

tп = -------------- , (7.1)

a

где N - заданное число раз, в которое уменьшается значение свободной составляющей переходного процесса за время tп;

a - абсолютное значение вещественной части полюса.

Если время переходного процесса является заданным, то можно получить соответствующее минимально - допустимое значение вещественной части полюса, наиболее близко расположенного к оси мнимых величин. Это значение принято называть степенью устойчивости.

Степень устойчивости определяется по формуле

Ln N

Qмин = ----------- .

tп

Колебательность САУ может быть определена как

G = tgd, (7.2)

где d - минимальный угол, в двойной раствор которого вписываются все комплексные полюсы.

При наличии нулей передаточной функции оценка показателей качества по полюсам может дать большую ошибку, причём тем большую, чем ближе к оси мнимых величин расположены нули.

На рис.7.1 и 7.2 приведено расположение нулей и полюсов передаточных функций замкнутой САУ рис.3.1 для воздействий Df(t) и DZ(t) при различных значениях Кос, а также значения показателей качества, определенные по (7.1) и (7.2) при N = 10.


Рис.7.1. Нули (n) и полюсы (р) передаточной функции САУ рис.3.1 при входном воздействии Df(t), Ку = 20, Кос = 1.0 (а) и Кос = 20 (б).

Из рис.7.1 и 7.2 следует, что при Ку = 1.0и Кос = 1.0 значение свободной составляющей переходного процесса уменьшается в 10 раз за время tn = 25с, а при Ку = 20, Кос = 20 - за время tn = 36c. Показатель колебательности при этом имеет, соответственно, значения G = 28,9 (сильная колебательность) и G = 0.078 (колебательность практически отсутствует).

Рис.7.2. Полюсы передаточной функции САУ рис.3.1 при входном воздействии DZ(t), Ку = 20, Кос = 1.0 (а) и Кос = 20 (б).

8. ОБЛАСТЬ УСТОЙЧИВОСТИ

Область устойчивости в пространстве варьируемых параметров рассчитывается и строится для оценки границ возможного их изменения без нарушения устойчивости САУ.

Параметры, в пространстве которых должна быть построена область устойчивости, определены заданием. Построение может быть осуществлено применением аналитических методов (Д-разбиение, определители Гурвица и др.) или с помощью специальной компьютерной программы “Расчёт областей устойчивости”. Предпочтительным является аналитический метод с проверкой результатов расчёта на компьютере.

В качестве примера ниже приведены расчет и построение области устойчивости САУ по рис.3.1 в плоскости параметров Ку и Кос.

Характеристическое уравнение замкнутой САУ

Дз(р) = 0.8Р3 + (5.7 + 6.4 КуКос)Р2 + (8.7 + 0.8 КуКос)Р + 1 + 0.48Ку=0

целесообразно представить в виде

1 1 1 1

Дз(р) = --- 0.8 Р3+--- 5.7Р2+6. 4 КосР2+--- 8.7Р+0.8 КосР+---+0.48=0, (8.1)

Ку Ку Ку Ку или

1

Дз(р) = ------ S( P) + КосR(P) + Q(P) = 0 ,

Ку

где S(P) = 0.8Р3 + 5.7Р2 + 8.7Р + 1;

R(P) = 6.4Р2 + 0.8Р;

Q(P) = 0.48

Положим Р = jw, тогда

S(jw) = - j 0.8w3 - 5.7w2 + j8.7w + 1 = x1(w) + jy1(w);

R(jw) = - 6.4w2 + j 0.8w = x2(w) + jy2(w);

Q(jw) = 0.48 = x3(w) + jy3(w),

Гдеx1(w) = - 5.7w2 + 1; y1(w) = - 0.8w3 + 8.7w;

x2(w) = - 6.4w2; y2(w) = 0.8w;

x3(w) = 0.48; y3(w) = 0.

Составим определители:

- x3(w) x2(w)

D1(w) = = - 0.384w;

- y3(w) y2(w)

x1(w) - x3(w)

D2(w) = = - 0.384w3 + 4.176w;

y1(w) - y3(w)

x1(w) x2(w)

D(w) = = - 5.12w5 + 5.12w3 + 0.8w.

y1(w) y2(w)

Искомые параметры, соответствующие координатам границы Д - разбиения,