Смекни!
smekni.com

Теория автоматического управления Структурная схема (стр. 2 из 6)

x = 1.0 - e = 1.0 - 0.094 = 0.906.

За счёт возмущающего воздействия Df это значение x ещё уменьшится на величину Кс Df.

Следует иметь в виду, что если замкнутая САУ имеет последовательно включенное интегрирующее звено, не охваченное жёсткой обратной связью, то она является астатической по задающему воздействию, т.е. безошибочно воспроизводит это воздействие (К’с = e =0).

5. ПЕРЕХОДНАЯ ХАРАКТЕРИСТИКА

По переходной характеристике определяются динамические показатели качества управления (регулирования):

- время переходного процесса tп;

- перерегулирование g;

- колебательность G.

В реальных линейных САУ управляемая величина асимптотически приближается к установившемуся значению, т. е. теоретически tп = ¥. Поэтому, исходя из практических соображений, под временем переходного процесса понимают интервал времени, по истечении которого (от момента подачи воздействия) начинает выполняться условие

|Dx(t) - Dx|£D,

где Dx(t) - текущее значение управляемой величины;

Dx - установившееся отклонение;

D - наперёд заданное значение допустимого отклонения управляемой величины от нового установившегося значения.

Часто принимают

D = 0.05Dx

Во время переходного процесса текущее значение отклонения управляемой величины может превышать установившееся отклонение. Разность между максимальным и установившимся отклонением, выраженная в процентах от установившегося отклонения, называется перерегулированием

|Dxмакс - Dx|

g = -------------------------------- 100%

|Dx|

Если переходная характеристика имеет колебательный характер, то оценивается так называемая колебательность.

Колебательность может быть определена отношением второго и первого максимумов переходной характеристики, выраженным в процентах

Dxмакс,2

G =------------------------ 100%

Dxмакс,1

Незатухающие колебания при этом соответствуют колебательности 100%. Колебательность стремится к нулю при уменьшении до нуля второго максимума переходной характеристики.

В данной курсовой работе переходная характеристика может быть получена экспериментально путем математического моделирования САУ (программа “CLASSIC”). При этом имеется возможность легко настраивать САУ на заданные качественные показатели изменением параметров, значения которых не заданы и могут варьироваться (например, Кос на рис.3.1). В качестве примера на рис.5.1 приведен вариант структурной схемы САУ рис.3.1, реализованной на компьютере при входном воздействии Df, выходном - Dx, Ку = 20, Кос = 20.

При исследовании переходного процесса в САУ, обусловленного изменением задающего воздействия (уставки) на DZ(рис.3.1) “вход” следует перенести на звено 4.

Рис.5.1. Вариант структурной схемы САУ рис.3.1.

Примечание. В программе “CLASSIC” оператор Лапласа обозначен S.

При исследовании переходной характеристики следует изменять параметры варьируемого звена САУ таким образом, чтобы характеристика по возможности имела монотонный характер без перерегулирования и колебательности. Если по каким-либо причинам этого достичь не удаётся, то можно считать допустимым

g£ 20 ¸ 25%; G £ 20%

На рис.5.2., 5.3. приведены переходные характеристики САУ рис.3.1 при Кос = 1.0; 10; 20 и Ку = 20 для воздействий Df и DZ соответственно.


Koc = 1.0

t,c 0 2.06 4.1 6.2 8.2 10.3 11.33 14.42 20.6 23.69 34
Dx -0.4 -0.35 -0.23 -0.09 0.013 0.072 0.083 0.057 -0,06 -0.08 -0.02

Koc = 10

t,c 0 4.7 7.8 10.9 14 20.2 26.4 29.5 35.7 42 45
Dx -0.4 -0.37 -0.33 -0.29 -0.25 -0.16 -0.09 -0.07 -0.04 -0.02 -0.02

Koc = 20

t,c 0 4.6 9.13 15 20 25 29.6 38.7 47.8 59.2 68.3
Dx -0.4 -0.38 -0.36 -0.3 -0.26 -0.23 -0.19 -0.14 -0.10 -0.07 -0.06

Рис.5.2. Переходная характеристика САУ рис.3.1 при входном воздействии Df(t) = 1.0 и различных значениях Koc.

Koc = 1.0

t,c 0 2.25 4.5 6.2 9 10.1 11.3 11.8 13 14.6 18
Dx 0 0.154 0.49 0.77 1.1 1.17 1.21 1.21 1.19 1.13 0.95

Koc = 10

t,c 0 4 6 8 10 11 14 16 18.5 20.5 24.5
Dx 0 0.05 0.1 0.16 0.23 0.28 0.38 0.45 0.54 0.6 0.7

Koc = 20

t,c 0 4.4 10.3 14.7 19 23.5 29 38 45.5 48.4 57
Dx 0 0.3 0.13 0.22 0.31 0.4 0.51 0.64 0.71 0.74 0.8

Рис.5.3. Переходная характеристика САУ рис.3.1 при входном воздействии DZ = 1.0, Ку = 20 и различных значениях Koc.

При подаче воздействия Df(t) = 1.0 (например, включение номинальной нагрузки) управляемая величина x (например, напряжение) мгновенно изменяется на Dx = - 0.4, т. е. уменьшается. При этом x = xо + Dx = 1.0 - 0.4 = 0.6, т. е. при t = 0 и f = 1.0 управляемая величина имеет значение такое же, как при отсутствии управляющего устройства (см. рис.4.1). За счёт действия управляющего устройства (регулятора) после затухания переходного процесса отклонение управляемой величины приобретает значение Dx = - 0.0377.

При Кос = 1.0 переходный процесс имеет колебательный характер с большим перерегулированием. При Кос = 10 перерегулирование составляет

½-0.024 - (-0.0377)½

g = --------------------------------------------------- 100% = 36.3% ,

½-0.0377½

а время переходного процесса tп = 78с. При Кос = 20 перерегулирование отсутствует, но время переходного процесса увеличивается до tп = 120с (на рис.5.2 не показано).

При входном воздействии DZ(t) = 1.0 управляемая величина x = Dx (при xо = 0, Zо = 0 и f(t) = 0) стремится к значению x = 0.906. Причем, характер переходного процесса определяется значением Кос.

На основании анализа переходных характеристик рис.5.2 и 5.3 с целью исключения перерегулирования предварительно принимается Кос =20.

6. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ. КАЧЕСТВО ПРОЦЕССА УПРАВЛЕНИЯ

Комплексную (амплитудно-фазовую) частотную характеристику (КЧХ, АФХ) W(jw) аналитически легко получить по соответствующей передаточной функции, если положить Р = jw.

Путём выделения в выражении КЧХ вещественной U(w) и мнимой V(w) частей, получаются соответственно вещественная (ВЧХ) и мнимая (МЧХ) частотные характеристики

U(w) = ReW(jw);

V(w) = ImW(jw).

Модуль А(w) и аргумент j(w) КЧХ определяют соответственно амплитудную (АЧХ) и фазовую (ФЧХ) частотные характеристики

U(w) = modW(jw);

V(w) = argW(jw).

Между всеми частотными характеристиками имеют место очевидные соотношения:

W(jw) = U(w) + jV(w) ;

W(jw) = А(w) e jj (w) ;

А(w) = ÖU2(w) + V2(w) ;

V(w)

j(w) = arctg -------------- ;

U(w)

U(w) = А(w)cosj(w);

V(w) = А(w)sinj(w).

Применительно к САУ рис.3.1 при входном воздействии Df(t) частотные характеристики приведены на рис.6.1 и 6.2.

а)
б)
U(w) -0.03 -0.04 -0.06 -0.08 -0.11 -0.17 -0.25 -0.33 -0.4 -0.44 -0.44
V(w) -0.01 -0.05 -0.1 -0.13 -0.17 -0.21 -0.29 -0.23 -0.18 -0.11 -0.06
w,рад/с 0.001 0.005 0.01 0.013 0.018 0.025 0.035 0.48 0.066 0.09 0.13

Рис.6.1. Комплексная (а), вещественная (б) и мнимая (б) частотные характеристики САУ рис.3.1 при входном воздействии Df(t) и Ку = 20

w,рад/с 0.001 0.005 0.01 0.013 0.018 0.025 0.035 0.048 0.066 0.09 0.13
A(w) 0.04 0.071 0.117 0.153 0.202 0.27 0.34 0.402 0.439 0.454 0.444
j(w),град 196 232 239 238 237 231 223 215 204 194 188

Рис.6.2. Амплитудная (а) и фазовая (б) частотные характеристики САУ рис.3.1 при входном воздействии Df(t) и Ку = 20, Кос = 20.

Из частотных характеристик следует, что при гармоническом характере возмущающего воздействия Df(t) влияние его на отклонение управляемой величины Dx(t) очень сильно возрастает с увеличением частоты. Например, при w1 = 0.047 рад/с и Df = 1.0sinw1t Dx(t) = 0.4sin(w1t + 2150), т. е. амплитуда колебаний Dxm = 0.4 имеет такое же значение, как и при отсутствии регулирования. Действительно, если в САУ рис.3.1 разорвать главную обратную связь, то будет

DX(P)

W(P) = ---------------- = - 0.4 ,

DF(P)

соответственно,

W(jw) = -0.4 и А(w) = 0.4.

При w > w1 влияние возмущающего воздействия сказывается ещё сильнее. Поэтому функционирование САУ рис.3.1 как системы регулирования будет эффективным только в том случае, если частота изменения возмущающего воздействия Df(t) будет достаточно малой (например, w1 < 0.01 рад/с). Из ФЧХ (рис.6.2,б) следует, что синусоидальные колебания величины на выходе Dx(t) опережают по фазе колебания Df(t) на угол больше 1800. Причем, при Ку = 20, Кос = 20 наибольший сдвиг фаз имеет место при w2 = 0.01 рад/с. Следует также отметить, что при w< w2 = 0.01 рад/с зависимость j(w) весьма резкая. Монотонный характер (без максимума) вещественной (рис.6.1,б) и амплитудной (рис.6.2,а) частотных характеристик свидетельствует о том, что при рассматриваемых параметрах (Ку = 20, Кос =20) скачкообразное изменение Df(t) вызывает монотонный (практически без перерегулирования и колебательности) переходный процесс Dx(t) (см.рис.5.3). На рис.6.3, 6.4 показаны КЧХ, ВЧХ, АЧХ и ФЧХ для случая, когда в качестве входного рассматривается задающее воздействие DZ(t). Характеристики построены при двух значениях Кос.