Смекни!
smekni.com

Интегрированные системы безопасности в гражданской авиации (стр. 8 из 11)

Таким образом, входной величиной датчика может быть механическое усилие, а выходной — полное сопротивление катушки. При питании катушки датчика переменным током выходной величиной может быть амплитуда тока, протекающего через катушку.

Чувствительность магнитоупругого датчика зависит от магнитной чувствительности сердечника к давлению, а также от конструкции магнитопровода и катушки датчика. Конструкция датчика должна быть выполнена так, чтобы потоки рассеяния были сведены к минимуму. Наибольшей магнитной чувствительностью к давлению обладают магнитные материалы, имеющие большую магнитную проницаемость с большим значением магнитострикции при малой индукции насыщения. К ним относятся некоторые сорта пермаллоя а также трансформаторная сталь.

3.2 Индукционные, термоэлектрические и пьезоэлектрические датчики

3.2.1 Индукционные датчики

В индукционных датчиках используется Явление электромагнитной индукции, заключающееся в том, что в проводнике, перемещаемом в магнитном поле перпендикулярно направлению магнитных силовых линий, наводится э. д. с, пропорциональная скорости движения проводника (аналогично наводится э. д. с. при перемещении магнитного поля относительно проводника или же при изменении интенсивности магнитного поля вокруг проводника).

Индукционные датчики непосредственно могут применяться только для измерения скорости линейных и угловых перемещений (тахогенераторы). Особые конструкции тахогенератора позволяют измерять ускорения вращающихся валов.

Конструктивно датчики выполняются либо с катушкой, перемещаемой в неподвижном магнитном поле, либо с перемещаемым магнитным полем и неподвижной катушкой, либо с неподвижными катушкой и магнитным полем, но перемещаемым прерывателем магнитного потока.

Для повышения чувствительности индукционных датчиков, выходной величиной которых является частота, необходимо изготовлять их с большим числом пар магнитных полюсов.

Для измерения скорости вращения или скорости возвратно-поступательного движения могут применяться импульсные датчики, основанные на явлении электромагнитной индукции. Выходной величиной таких датчиков является частота следования импульсов. Такой датчик представляет собой постоянный магнит, укрепленный на подвижном объекте, и сигнальную катушку, укрепляемую неподвижно.

Другой разновидностью импульсного датчика может быть такой датчик, у которого неподвижной является система из постоянного магнита, магнитопровода и сигнальной катушки; в качестве подвижной части используется диск из ферромагнитного материала с отверстиями.

Погрешности индукционных датчиков определяются:

1) изменениями магнитного поля с течением времени (эта погрешность устраняется периодической регулировкой магнитного шунта);

2) изменениями сопротивления обмоток и силы магнитного поля за счет нагрева (эта погрешность устраняется применением термомагнитного шунта или термистора в цепи якоря). Погрешность их может быть сведена к величине 0,5—1,5%.

3.2.2 Термоэлектрические датчики (термопары)

Принцип действия термоэлектрических датчиков основан на явлении термоэлектрического эффекта, заключающегося в том, что если два разнородных проводника соединить одними концами в одной точке и место соединения нагреть, то на свободных «холодных» концах проводников появится э. д. с. Величина этой э. д. с. зависит от материалов, из которых изготовлены элементы термопары, и от разности температур соединенных и свободных концов.

Для термоэлектрических датчиков выбирают такие сочетания термоэлектродов, которые дают наибольшие значения термо-э. д. с. К материалам, используемым для изготовления электродов термопар, предъявляются следующие требования:

1. механическая и химическая устойчивостьпри высокихтемпературах;

2. хорошая электропроводность;

3. постоянство термоэлектрических свойств;

4. однозначная зависимость термо-э. д. с. от температуры.

Для измерения температур до 1000° С включительно используются термопары из неблагородных металлов. Температуры до 1600° С измеряются термопарами из благородных металлов. Свыше 1600° С используются термопары из жароупорных материалов: уголь — карбид кремния (до 1800° С); вольфрам—молибден (до 2100° С).

Предельная температура применения термопары зависит не только от свойств ее электродов, но и от конструкции приемной части датчика (армировки), длительности применения и свойств среды, в которой работает термопара.

Свободные концы электродов термопары соединяются с измерителем посредством проводов. Если материал соединительных проводов и материалы электродов термопары разнородны, то в местах соединения будут создаваться термо-э. д. с, величины которых зависят от температуры среды, окружающей выводы термопары.

Термо-э. д. с, наведенные на свободных («холодных») концах термопары, алгебраически складываются с основной термо-э. д. с, характеризующей измеряемую температуру, и тем самым вносят соответствующие искажения в измерения. При постоянстве температуры среды, окружающей головку с выводными зажимами, эти искажения могут быть учтены при градуировке термопары.

Если температура головки термопары изменяется, то погрешности измерения за счет термо-э. д. с, наводимых на выходных зажимах, не могут быть учтены при градуировке. В таких случаях к измерителю термопары придается график поправок на измерение в зависимости от температуры головки (зажимов измерителя) или же применяются специальные схемы соединения термопары с измерителем.

Инерционность термопар определяется их конструкцией, условиями теплообмена с окружающей средой. Постоянная времени термопар может находиться в пределах единиц до нескольких сотен секунд.

3.2.3 Обращенные датчики

Принцип действия обращенных датчиков основан на сравнении двух неэлектрических величин, одна из которых измеряемая, а другая получена путем преобразования известной электрической величины. Эти датчики используются главным образом как измерители.

Неоновая лампа периодически зажигается импульсами напряжения, вырабатываемыми блокинг-генератором. При совпадении частоты вспышек с частотой следования меток, нанесенных на вращающемся объекте, последний будет казаться неподвижным. Зная частоту блокинг-генератора, можно определить частоту вращения объекта.

Другим примером обращенного преобразователя является электрооптический пирометр, служащий для измерения высоких температур.

Обращенные преобразователи применяются в качестве звеньев обратной отрицательной связи при построении высокоточных измерительных устройств неэлектрических величин.

3.3 Усиление сигналов датчика

В электрических приборах для измерения неэлектрических величин находят широкое применение различного рода усилители, которые служат для согласования выходов датчиков и мостовых схем с измерительными приборами или устройствами, выполняющими измерительные функции. При этом осуществляется усиление сигналов датчиков или мостовых схем по току или напряжению:

Часто с выхода датчиков или мостовых измерительных схем снимаются постоянные по величине или медленно изменяющиеся сигналы, которые должны быть усилены. Для этого широко используются так называемые усилители постоянного тока. Среди них различают усилители с непосредственной связью между каскадами и усилители с преобразованием постоянного сигнала в переменный.

Усилители с непосредственной связью выполняются без переходных емкостей с непосредственной гальванической связью выхода предыдущего каскада с выходом последующего.

В усилителях с преобразованием входной сигнал постоянного тока или напряжения преобразуется в переменное напряжение, амплитуда которого пропорциональна величине входного сигнала. Усиление преобразованного сигнала осуществляется усилителями переменного тока.

Для получения неискаженного сигнала на выходе усилителя необходимо обеспечить нормальные режимы работы ламп (или транзисторов) и стабильность его параметров в течение всего времени работы.

Обеспечение необходимых режимов работы ламп может быть достигнуто применением отдельных источников питания для каждого каскада или потенциометрических Делителей с общим источником питания.

Применение отдельных источников питания для каждого каскада неудобно, так как усилительная установка получается громоздкой. Поэтому такой способ питания применяется главным образом в лабораторной практике.

Достижение необходимой стабильности работы усилителей с непосредственной связью может быть обеспечено применением стабилизированных источников питания, специальных компенсирующих схем и отрицательной обратной связи. Для питания анодных цепей усилителей применяются выпрямители с электронной стабилизацией или гальванические элементы. В меньшей степени, но также необходима стабилизация питания накала ламп.

Обычно стабилизация источников питания все же оказывается недостаточной. Поэтому наряду с ней применяют специальные схемы усилителей.

Применение отрицательной обратной связи улучшит характеристики усилителя. При этом уменьшаются нелинейные, частотные и фазовые искажения. Влияние нестабильности источников питания также становится меньшим.

3.4 ИК-пассивные датчики охранной системы

Датчики являются одним из главных элементов системы сигнализации и во многом определяют ее эффективность. Анализ номенклатуры датчиков, предлагаемых крупнейшими производителями систем охранной сигнализации, показывает, что в классе датчиков для охраны помещений наиболее популярными являются инфракрасные (ИК) пассивные, комбинированные (в основном ИК+микроволновые), различные модификации контактных (в первую очередь магнитоконтактные) и акустические датчики разбития стекла. Реже применяются микроволновые, ультразвуковые, активные и инерционные ударные датчики.