Подставляя рассчитанные значения в формулу (1.3), получаем вторую математическую модель ОУ:
Для нахождения передаточной функции по методу Лукаса определяем следующие коэффициенты:
Таким образом, получили третью передаточную функцию для возмущающего канала:
Находим погрешности аппроксимации по интегральному критерию:
Выше представленные расчёты показывают, что наименьшую погрешность аппроксимации даёт третья модель, следовательно, она наилучшим образом аппроксимирует экспериментальную характеристику.
В качестве показателя оптимальности АСР принимается минимум интеграла от квадрата ошибки системы при действии на объект наиболее тяжелого ступенчатого возмущения по регулирующему каналу (интегральный квадратичный критерий) с учетом добавочного ограничения на запас устойчивости системы, т.е.
Такой критерий допускает значительное перерегулирование
При практических расчётах запас устойчивости удобно характеризовать показателем колебательность системы М, значение которого в САУ, имеющих интеграл в алгоритме управления, совпадает с максимумом амплитудно-частотной характеристики системы:
где:
wр – резонансная частота, на которой Аз() имеет максимум.
Чтобы максимум не превышал некоторой заданной величины М, амплитудно-фазовая характеристика (АФХ) разомкнутой системы Wраз(j) не должна заходить внутрь «запретной» области ограниченной окружностью, центр uo и радиус Ro которой определяется через М формулами (2.3) и (2.4), (рис. 4):
Рис. 4. Определение центра и радиуса окружности, соответствующей заданному показателю колебательности М
Если же Wраз(j) касается указанной окружности, то это означает, что САУ находится на границе заданного запаса устойчивости.
На практике чаще всего принимают
С помощью программы «СС» рассчитываем и строим АФХ объекта по передаточной функции (1.5) (приложение 3). Результаты расчёта приведены в таблице 2:
Таблица 2
| 0 | 0,042 | 0,082 | 0,131 | 0,192 | 0,255 | 0,339 | 0,451 | 0,599 | 0,797 |
А | 0,55 | 0,536 | 0,5 | 0,44 | 35 | 0,279 | 0,2 | 0,136 | 0,086 | 0,052 |
| 0 | -20 | -38,7 | -60 | -81,7 | -100,6 | -120,5 | -140,4 | -160 | -179,6 |
| 0,797 | 1,06 | 1,409 | 2,059 | 3,009 | |||||
А | 0,052 | 0,031 | 0,018 | 0,009 | 0,004 | |||||
| -179,6 | -199,7 | -222 | -256,9 | -300,7 |
Также по передаточной функции (1.5) находим АЧХ, ФЧХ и
Рассчитаем ПИ-алгоритм управления, передаточная функция которого имеет вид:
а параметрами, подлежащими определению, являются коэффициент усиления Кр и постоянная интегрирования Ти, для этого используем графоаналитический метод.
1. По АФХ объекта Wобu-y (jω) строим семейство характеристик разомкнутой системы Wраз(jω) для Кр = 1 и нескольких фиксированных значений постоянной интегрирования Ти.
Для этого сначала строим несколько векторов характеристики объекта Wобu-y (jω), например, векторы
Через полученные точки С1, С2,…, Сn проводим плавную кривую, которая является характеристикой Wраз1(jω) для выбранного значения Ти.
Аналогичные построения проводим для других значений Ти. В итоге получаем семейство характеристик Wраз (jω) для различных значений Ти.
2. Из начала координат проводим прямую ОЕ под углом b, характеризующим запас устойчивости по фазе и определяемым как:
3. С помощью циркуля вычерчиваем окружности с центром на отрицательной вещественной полуоси, каждая из которых касается одновременно как прямой ОЕ, так и одной из характеристик Wраз1(jω) (центр каждой окружности и ее радиус находим подбором).
4. Отношение требуемого радиуса R0, определяемого по формуле (2.3), к полученному в каждом отдельном случае значению ri показывает, во сколько раз нужно изменить единичный коэффициент передачи регулятора (Кр=1), чтобы каждая характеристика Wраз1(jω) касалась окружности с заданным М, т.е.
Для вычисления Кр. пред использована формула:
где:
Rо – радиус, определяемый по формуле (2.3);
r – радиус окружности, находящийся методом подбора;
Все результаты вычислений представлены в таблице 3:
Таблица 3
Кр | 2,44 | 3,2 | 4,1 | 4,8 |
Ти | 4 | 5 | 6 | 8 |
5. В результате в плоскости варьируемых параметров алгоритма Кр и Ти строится граница области заданного запаса устойчивости (приложение 3).
Максимум отношения Кр/Ти, определяющего оптимальную настройку регулятора при низкочастотных возмущениях, соответствует точке пересечения касательной с границей заданного запаса устойчивости, проведённой через начало координат.
Передаточная функция регулятора, после определения координат точки А (Кр.опт = 4,5 и Ти опт = 6,55), имеет вид: