2. Принципы работы сканирующих зондовых микроскопов
В сканирующих зондовых микроскопах исследование микрорельефа поверхности и ее локальных свойств проводится с помощью специальным образом приготовленных зондов в виде игл. Рабочая часть таких зондов (острие) имеет размеры порядка десяти нанометров. Характерное расстояние между зондом и поверхностью образцов в зондовых микроскопах по порядку величин составляет 0,1 – 10 нм. В основе работы зондовых микроскопов лежат различные типы взаимодействия зонда с поверхностью. Так, работа туннельного микроскопа основана на явлении протекания туннельного тока между металлической иглой и проводящим образцом; различные типы силового взаимодействия лежат в основе работы атомно-силового, магнитно-силового и электросилового микроскопов. Рассмотрим общие черты, присущие различным зондовым микроскопам. Пусть взаимодействие зонда с поверхностью характеризуется некоторым параметром Р. Если существует достаточно резкая и взаимно однозначная зависимость параметра Р от расстояния зонд-образец, то данный параметр может быть использован для организации системы обратной связи (ОС), контролирующей расстояние между зондом и образцом. На рис. 3 схематично показан общий принцип организации обратной связи СЗМ [5].
Система обратной связи поддерживает значение параметра Р постоянным, равным величине Р , задаваемой оператором. Если расстояние зонд-поверхность изменяется, то происходит изменение параметра Р. В системе ОС формируется разностный сигнал, пропорциональный величине ΔР = Р - Р
3. Сканирующие элементы (сканеры) зондовых микроскопов
3.1 Сканирующие элементы
Для работы зондовых микроскопов необходимо контролировать рабочее расстояние зонд-образец и осуществлять перемещения зонда в плоскости образца с высокой точностью (на уровне долей ангстрема). Эта задача решается с помощью специальных манипуляторов – сканирующих элементов (сканеров). Сканирующие элементы зондовых микроскопов изготавливаются из пьезоэлектриков – материалов, обладающих пьезоэлектрическими свойствами. Пьезоэлектрики изменяют свои размеры во внешнем электрическом поле. Уравнение обратного пьезоэффекта для кристаллов записывается в виде:
u
где u
В различных технических приложениях широкое распространение получили преобразователи из пьезокерамических материалов. Пьезокерамика представляет собой поляризованный поликристаллический материал, получаемый методами спекания порошков из кристаллических сегнетоэлектриков. Поляризация керамики производится следующим образом. Керамику нагревают выше температуры Кюри (для большинства пьезокерамик эта температура менее 300
В сканирующей зондовой микроскопии широкое распространение получили трубчатые пьезоэлементы (рис. 4). Они позволяют получать достаточно большие перемещения объектов при относительно небольших управляющих напряжениях. Трубчатые пьезоэлементы представляют собой полые тонкостенные цилиндры, изготовленные из пьезокерамических материалов. Обычно электроды в виде тонких слоев металла наносятся на внешнюю и внутреннюю поверхности трубки, а торцы трубки остаются непокрытыми.
Под действием разности потенциалов между внутренним и внешним электродами трубка изменяет свои продольные размеры. В этом случае продольная деформация под действием радиального электрического поля может быть записана в виде:
u
где l
Δх = d*
где h – толщина стенки пьезотрубки, V – разность потенциалов между внутренним и внешним электродами. Таким образом, при одном и том же напряжении V удлинение трубки будет тем больше, чем больше ее длина и чем меньше толщина ее стенки [5].
Соединение трех трубок в один узел позволяет организовать прецизионные перемещения зонда микроскопа в трех взаимно перпендикулярных направлениях. Такой сканирующий элемент называется триподом.
Недостатками такого сканера являются сложность изготовления и сильная асимметрия конструкции. На сегодняшний день в сканирующей зондовой микроскопии наиболее широко используются сканеры, изготовленные на основе одного трубчатого элемента. Общий вид трубчатого сканера и схема расположения электродов представлены на рис. 5. Материал трубки имеет радиальное направление вектора поляризации.
Внутренний электрод обычно сплошной. Внешний электрод сканера разделен по образующим цилиндра на четыре секции. При подаче противофазных напряжений на противоположные секции внешнего электрода (относительно внутреннего) происходит сокращение участка трубки в том месте, где направление поля совпадает с направлением поляризации, и удлинение там, где они направлены в противоположные стороны. Это приводит к изгибу трубки в соответствующем направлении. Таким образом осуществляется сканирование в плоскости Х, Y. Изменение потенциала внутреннего электрода относительно всех внешних секций приводит к удлинению или сокращению трубки по оси Z. Таким образом, можно организовать трехкоординатный сканер на базе одной пьезотрубки. Реальные сканирующие элементы имеют часто более сложную конструкцию, однако принципы их работы остаются теми же самыми [5].
Широкое распространение получили также сканеры на основе биморфных пьезоэлементов. Биморф представляет собой две пластины пьезоэлектрика, склеенные между собой таким образом, что вектора поляризации в каждой из них направлены в противоположные стороны (рис. 6). Если подать напряжение на электроды биморфа, как показано на рис. 6, то одна из пластин будет расширяться, а другая сжиматься, что приведет к изгибу всего элемента. В реальных конструкциях биморфных элементов создается разность потенциалов между внутренним общим и внешними электродами так, чтобы в одном элементе поле совпадало с направлением вектора поляризации, а в другом было направлено противоположно.
Изгиб биморфа под действием электрических полей положен в основу работы биморфных пьезосканеров. Объединяя три биморфных элемента в одной конструкции, можно реализовать трипод на биморфных элементах.
Если внешние электроды биморфного элемента разделить на четыре сектора, то можно организовать движение зонда по оси Z и в плоскости X, Y на одном биморфном элементе (рис. 7).
Действительно, подавая противофазные напряжения на противоположные пары секций внешних электродов, можно изгибать биморф так, сто зонд будет двигаться в плоскости X, Y (рис. 7 (а, б)). А изменяя потенциал внутреннего электрода относительно всех секций внешних электродов, можно прогибать биморф, перемещая зонд в направлении Z (рис. 7 (в, г)) [5].
3.2 Нелинейность пьезокерамики
Несмотря на ряд технологических преимуществ перед кристаллами, пьезокерамики обладают некоторыми недостатками, отрицательно влияющими на работу сканирующих элементов. Одним из таких недостатков является нелинейность пьезоэлектрических свойств. На рис. 8 в качестве примера приведена зависимость величины смещения пьезотрубки в направлении Z от величины приложенного поля. В общем случае (особенно при больших управляющих полях) пьезокерамики характеризуются нелинейной зависимостью деформаций от поля (или от управляющего напряжения).