Смекни!
smekni.com

Радиотелеметрические системы с временным разделением каналов (стр. 4 из 4)

Рисунок 29

В фазовом дискриминаторе происходит сравнение фаз принимаемых и передаваемых импульсов, далее формируется управляющий сигнал, воздействующий на генератор.

Стартстопные системы синхронизации.

Структура сигнала при стартстопной синхронизации изображена на рисунке 30.

Стартовая, информационные и стоповя посылки отличаются по амплитуде, длительности или форме.

Рисунок 30.


При включении передатчика с помощью стартового импульса запускается синхронизатор приемного устройства. В конце цикла передачи синхронизатор останавливается стоповым импульсом. В промежутке между стартовым и стоповым импульсами передаются информационные посылки.

5.2 Методы кадровой синхронизации

Различают следующие методы кадровой синхронизации: маркерную, безмаркерную и инерционную.

Маркерная синхронизация осуществляется путем передачи в начале кадра синхроимпульса (маркера), отличающегося от информационных и других служебных сигналов. В приемной станции осуществляется обнаружение и выделение маркерного сигнала, из которого формируется кадровый сигнал. Структура селектора маркерного сигнала зависит от его формы. Если маркерный сигнал отличается по амплитуде от информационных импульсов, то схема селектора имеет вид (рисунок 31).

Рисунок 31

Недостатком этой схемы является невысокая помехоустойчивость.

Схема селектора маркерного сигнала, отличающегося от информационных сигналов по длительности, приведена на рисунке 32.


Рисунок 32

Данная схема обладает более высокой помехоустойчивостью, чем схема изображенная на рисунке 31.

Наибольшей помехоустойчивостью обладает схема селектора маркерного сигнала, отличающегося от информационных сигналов по форме (рисунок 33).

Безмаркерная синхронизация является частным случаем маркерной синхронизации, когда синхросигнал отсутствует. Начало кадра определяется по паузе, длительность которой равна удвоенному канальному интервалу (рисунок 34).

При инерционной синхронизации для управления работой слектора приемной станции используется инерционный генератор синхроимпульсов, который подстраивается по фазе принимаемыми синхросигналами.

Рисунок 33


Рисунок 34

При инерционной синхронизации кратковременные сбои не приводят к срыву синхронизма коммутаторов приемной и передающей систем. Рассмотрим блок – схему приемной части канала инерционной синхронизации (рисунок 35).

Рисунок 35

В селекторе осуществляется выделение маркерного сигнала по форме, амплитуде или длительности. В начальный период времени схема стробирования отключена и система осуществляет вхождение в синхронизм. Из выделенного маркерного сигнала формируется синхросигнал. Этот сигнал используется в качестве опорного, по которому производится подстройка фазы генератора. Для повышения помехоустойчивости введено стробирование маркерного сигнала.

ФНЧ обеспечивает инерционность работы схемы при пропадании сигналов синхронизации за определенное время.

Заключение

Радиосвязь - одно из самых простых и надежных средств связи. Рации полезны и удобны, их можно использовать там, где недоступен ни один другой вид связи, системы радиосвязи недороги по цене, легко развертываются и нетребовательны к условиям окружающей.

Наиболее характерными для современных РСПИ являются три формы представления сообщений, которые формируются на борту и передаются по линиям связи:

1. Сообщения о наличии/отсутствии некоторого априорно известного сообщения (включения/выключения двигателей, удары метеорита).

2. Сообщения о величинах характеризуют значения параметров в определенный момент времени.

3. Сообщения о процессах должны с заданной точностью воспроизводить процессы на определенном отрезке времени, т.е. в этом случае также необходимо производить калибровку амплитуды и масштабирование по времени.

Список литературы

1. Радиотехнические методы передачи информации: Учебное пособие для вузов / В.А. Борисов, В.В. Калмыков, Я.М. Ковальчук и др.; Под ред. В.В. Калмыкова. М.: Радио и связь. 1990. 304с.

2. Системы радиосвязи: Учебник для вузов / Н.И. Калашников, Э.И. Крупицкий, И.Л. Дороднов, В.И. Носов; Под ред. Н.И. Калашникова. М.: Радио и связь. 1988. 352с.

3. Тепляков И.М., Рощин Б.В., Фомин А.И., Вейцель В.А. Радиосистемы передачи информации: Учебное пособие для вузов / М.: Радио и связь. 1982. 264с.

4. Кириллов С.Н., Стукалов Д.Н. Цифровые системы обработки речевых сигналов. Учебное пособие. Рязань. РГРТА, 1995. 80с.