6. Аналіз стійкості періодичного режиму, розрахованого спектральним методом
В спектральному методі розрахунку періодичного режиму ураховується N гармонік, тому для аналізу використовується кінцевий визначник Хіла. Звичайно прийняти кількість рядків та стовпців в ньому рівним
Скінченний визначник Хіла втрачає періодичність по
де L і T – поліноми від
n – порядок схеми.
Причому з процедури розкриття визначника і подальших перетворень можна знайти
Це указує на те, що у полінома знаменника корені проявляють ту саму властивість, як і полюси нескінченного визначника. Звідси витікає, що обговорювана властивість може мати місце і тоді, коли визначник неперіодичний. Мабуть, така властивість є і у характеристичних показників визначника, тобто у коренів полінома чисельника в (16). До жалю, цей факт поки не доведено. Якщо це вдалось би зробити, то з’явились можливость працювати над методом аналізу стійкості, спираючись на розрахунок характеристичних показників. Його алгоритм можна було подати в такому вигляді: розрахунок n близько розташованих коефіцієнтів полінома
Обміркуємо можливість використання алгоритмів, які відносилися до нескінченного визначника Хіла.
Розрахунок по формулі (14) тепер спрощується із-за скінченої розмірності визначника. Однак немає впевненості, що до (14) можна привести скінченний визначник. Недоведення цього факту народжує сумління в точності аналізу. Оскільки видно, що лише в границі, при
Таким чином, аналіз стійкості періодичного режиму, при використанні скінченого визначника Хіла, утруднюється внаслідок не вирішення ряду питань.