стійкість рівновага періодичний режим
5. Аналіз стійкості періодичного режиму, отриманого часовим методом
Як вказувалося, в цій ситуації, щоб аналізувати стійкість, треба розраховувати характеристичну матрицю, або використовувати нескінченний визначник Хіла.
Шуканими даними для обчислення елементів характеристичної матриці є еквівалентна схема для малих збурень, в якій закон зміни параметрів кожного моделюючого елемента повинен бути задано, як функція часу. Подальша послідовність розрахунків така:
- складання диференційного рівняння схеми для малих збурень;
- n-кратне інтегрування цих рівнянь (n – порядок схеми) на протязі періоду модуляції при початкових умовах, заданих стовпцем одиничної матриці; це дозволяє сформувати характеристичну матрицю, так як після кожного інтегрування знаходимо значення змінних при
- розрахунок власних значень характеристичної матриці.
При другому методі використовується вираз, до якого приводиться нескінченний визначник. Якщо мати на увазі рівняння для малих збурень (9), то значення характеристичних показників потрібно знаходити за допомогою формули (12), прийнявши рівною нулю її праву частину.
Рішення рівняння, в якому невідоме входить як співмножник до аргументу тригонометричних функцій, надто складне. Позначивши
причому
В результаті
де
Після приведення до загального знаменника знайдемо
Поліном чисельника є характеристичним для рівняння (9), так його корені, зв’язані відповідним чином із характеристичними показниками, перетворюють в нуль визначник Хіла. Корені полінома знаменника є “мультиплікаторами” усередненої системи. Ступінь обох поліномів однакова. Коефіцієнти характеристичного полінома визначаються через “мультиплікатори” усередненої системи. Наприклад,
Формули для інших коефіцієнтів набагато складніші.
Таким чином, за допомогою нескінченного визначника Хіла маємо змогу знайти характеристичний поліном рівняння для малих збурень без інтегрування самого рівняння.
Аналіз стійкості із використанням нескінченного визначника Хіла можна зробити двома способами. Перший зводиться до обчислення коефіцієнтів характеристичного полінома. Другий заснований на вивченні годографа визначника при
1. Опишемо перший алгоритм розглянутого методу. Шукані дані ті ж, що і в попередньому методі. Але для модульованих елементів повинні бути відомі коефіцієнти рядів Фур’є. Послідовність розрахунків виглядає так:
- обчислення
- n-кратний розрахунок елементів чисельного визначника при
- розрахунок коефіцієнтів характеристичного полінома;
- обчислення характеристичних коренів або використання якого-небудь критерію стійкості.
2. Перш ніж розглядати другий алгоритм, встановимо, яким умовам підпорядковано годограф визначника Хіла при стійкому та нестійкому періодичному режимі. Скористаємось формулою (14) і врахуємо такі обставини (рис. 1):
уявну вісь на площині характеристичних показників визначає вираз
перетворення
Кінець вектора
Наше завдання – знайти кут повороту годографа
і
2. Зараз можна описати другий алгоритм методу, спираючогося на нескінченний визначник Хіла. Шукані дані ті самі, що і для першого алгоритму, а послідовність розрахунка така:
- вибір значення частоти;
- розрахунок фази
- складення с попередніми значеннями фази;
- перехід до нового значення частоти та повтор розрахунку;
- розрахунки завершуються при виході частоти за межі, обмежені нерівностями (15).
На вибір алгоритму із числа розглянутих впливає ряд факторів. Наприклад, ефективність програми чисельного інтегрування та програми обчислення визначника і т.і. Перший метод – чисельне інтегрування рівнянь для малих збурень з метою визначення елементів характеристичної матриці – зручний тим, що він використовує засоби, використані для розрахунку періодичного режиму. Однак остаточне рішення залежить від конкретних умов.