На перший погляд уявляється, що явні методи мають перевагу над неявними тому, що в останніх значення
В даний час в алгоритмах чисельного інтегрування проблемно-орієнтованих програм використовується кінцево-різницеві методи, які мають бажану стійкість та дозволяють оцінювати локальну методичну похибку на кожному кроці. За допомогою цієї оцінки підтримується максимальний розмір кроку і вибирається мінімальний порядок методу. Для зменшення об’єму розрахунків в неявних методах
Відносно методів інтегрування, спираючись на розклад невідомої функції в ряд Тейлора, наприклад методом Рунге-Кутта різних порядків, можна зазначити, що вони знаходять обмежене використання. Пов’язано це з двома обставинами: по-перше, ускладнюється оцінка локальної методичної похибки на кожному кроці інтегрування; по-друге, для визначення
3. Спектральні методи
1 Математичний зміст спектральних методів. Розглянемо розрахунок періодичного режиму в нелінійному пристрої на прикладі конкретної схеми (рис. 1), складеної з паралельно з’єднаних провідностей y(p), нелінійного опору з вольт-амперною характеристикою
Рисунок 1 – Схема, за допомогою якої ведеться розрахунок періодичного режиму
На вході схеми діє періодичне джерело струму із періодом
При заданих y(p),
Подамо шукану напругу в формі ряду Фур’є:
Задача зводиться до визначення спектральних компонентів в (3).
Очевидно, при періодичному режимі струм нелінійного опору та заряд нелінійної ємності будуть також періодичними функціями часу
Важливо мати на увазі, що кожна амплітуда струму та заряду в (4) і (5) буде, в силу (3), функцією всіх комплексних амплітуд шуканої напруги.
Щоб отримати рівняння для
Тут усі комплексні амплітуди постійні. Значить, оператор диференціювання діє тільки на експоненційні функції
Отже, можна записати
де
Отримане співвідношення являє собою лінійну комбінацію функцій
Вище зазначалось, що кожна амплітуда струму та заряду є функцією комплексних амплітуд напруги
Тому (6) являє собою нескінчену систему трансцендентних (нелінійних) рівнянь відносно комплексних амплітуд напруг.
При практичних розрахунках досить врахувати постійну складову і кілька гармонік напруги. Так можна зробити тому, що розглянуті схеми вибірні. Звичайно, кількість гармонік, які беруться до уваги, повинен визначити розробник. Зазначимо, що в інженерній методиці розрахунку подібних схем, враховується лише одна гармоніка.
Допустимо, встановлено, що досить полічити N гармонік. Тобто, система (6) складається з (2 N + 1) рівнянь. Таким чином, розрахунок періодичного режиму спектральним методом зводиться до рішення системи нелінійних рівнянь. Різновиди методу визначаються способом рішення цієї системи.
Потрібно взяти до уваги особливість рівнянь (6): в них нелінійні функції (7) в деяких випадках можна описати аналітично. У зв’язку з цим, далі не розглядатимемо способи рішення (6), які спираються на аналітичне уявлення функції (7). Тому нижче зупинимося на двох способах: перший – ітераційний метод Ньютона; другий – різновид пропонованого у методу, що спирається на інтегрування диференційних рівнянь.
2 Алгоритм рішення системи нелінійних рівнянь методом Ньютона.
Запишемо рівняння (17) у векторно-матричній формі
де
Ліва частина формули (7), виявляється трансцендентною векторною функцією, аргумент якої – вектор напруги
За допомогою формули (7) отримаємо співвідношення для методу Ньютона стосовно (9)
Верхній індекс вектора напруги вказує на номер ітерації.
Якщо в (9) підставити
Продиференцюємо (10) по вектору
Нагадаємо, що похідна від вектор-функції незв’язності за векторним аргументом виявляється матрицею Якобі. Як видно, вона складається з трьох складових. Позначимо