Смекни!
smekni.com

Принцип построения РЛС управления воздушным движением (стр. 2 из 6)

Механизм привода антенны обеспечивает ее равномерное вращение. Частота вращения антенны определяется требованиями информационного обеспечения диспетчеров службы движения, ответственных за различные этапы полета. Как правило, предусмотрены варианты секторного и кругового обзора пространства.

Определение азимута ВС осуществляется с помощью считывания информации в системе координат, заданных для индицирующего устройства РЛС. Датчики угловых положений антенны предназначены для получения дискретных или аналоговых сигналов, являющихся базовыми для выбранной системы координат.

Передатчик предназначен для получения радиоимпульсов длительностью 1 ... 3 мкс. Частотный диапазон работы выбирается исходя из назначения РЛС. С целью снижения потерь, вызванных флуктуациями цели, увеличения числа импульсов, отраженных от цели за один обзор, а также с целью борьбы со слепыми скоростями применяют двухчастотное зондирование пространства. При этом рабочие частоты отличаются на 50...100 МГц.

Временные характеристики зондирующих импульсов зависят от функционального использования РЛС. В ОРЛ-Т используются зондирующие импульсы с длительностью порядка 3 икс, следующие с частотой повторений 300 ... 400 Гц, а ОРЛ-А имеют длительность импульса не более 1 мкс при частоте повторения 1 кГц. Мощность передатчика не превосходит 5МВт.

Для обеспечения заданной точности частоты генерируемых колебаний СВЧ, а также для нормальной работы схемы СДЦ используется устройство автоматической подстройки частоты (АПЧ). В качестве источника опорных колебаний в устройствах АПЧ используют стабильный местный гетеродин приемника. Скорость авто подстройки достигает единиц мегагерц на секунду, что позволяет снизить влияние АПЧ на эффективность работы системы СДЦ. Значение остаточной расстройки реальной величины частоты по отношению к номинальному значению не превосходит 0,1 ... 0,2 МГц.

Обработка сигналов по заданному алгоритму осуществляется в приемно-анализирующем устройстве РЛС в случае, когда Прм и АВОС практически неразличимы.

В общем случае приемник выполняет функции выделения, усиления и преобразования принимаемых эхо-сигналов. Особенностью приемников РЛС является наличие малошумящего усилителя высокой частоты, позволяющего снизить коэффициент шума приемника и тем самым увеличить дальность обнаружения цели. Среднее значение коэффициента шума приемников лежит в пределах 2 ... 4 дБ, а чувствительность составляет 140 дБ/Вт. Промежуточная частота обычно равна 30 МГц, двойное преобразование частоты в РЛС УВД практически не используется, коэффициент усиления УПЧ около 20 ... 25 дБ. В некоторых РЛС с целью расширения динамического диапазона входных сигналов используют усилители с ЛАХ.

В свою очередь для сужения диапазона входных сигналов, поступающих на АПОИ, используют АРУ, а также ВАРУ, повышающую коэффициент усиления УПЧ при работе на предельных дальностях обнаружения.

С выхода УПЧ сигналы идут по каналам амплитудного и фазового

детектирования.

Аппаратура временной обработки сигнала (АВОС) выполняет функцию фильтрации полезного сигнала на фоне помех. Наибольшей интенсивностью обладают непреднамеренные помехи от радиотехнических средств, расположенных в радиусе до 45 км от РЛС.

Аппаратурные средства борьбы с электромагнитными помехами включают специальные устройства коммутации и управления ДН, схемы ВАРУ, уменьшающие динамический диапазон входных сигналов от близкорасположенных целей, устройства бланкирования приемо-анализирующего тракта, фильтры синхронных и несинхронных помех и др.

Эффективным средством борьбы с помехами от неподвижных или слабо меняющих свое положение в пространстве и времени целей являются системы селекции движущихся целей (СДЦ), реализующие методы одно - или двукратной череспериодной компенсации. В ряде современных РЛС устройство селекции движущихся целей (СДЦ) реализует алгоритм цифровой обработки в квадратурных каналах, имея коэффициент подавления помех от неподвижных объектов 40 ... 43 дБ, а от метеопомех до 23 дБ.

Выходными устройствами АВОС являются параметрические и непараметрические обнаружители сигналов, позволяющие стабилизировать вероятность ложной тревоги на уровне 10-6.

При цифровой обработке сигналов АВОС представляет собой специализированный микропроцессор.

1.4. Трассовая обзорная РЛС «Скала - М»

Рассматриваемая РЛС представляет собой комплекс, в который входят ПРЛ и вторичный канал «Корень». РЛС предназначена для контроля и управления и может быть использована как в автоматизированных системах управления воздушным движением, так и в неавтоматизированных центрах УВД.

Основные параметры радиолокатора «Скала-М» приведены ниже.

Структурная схема РЛС «Скала-М» представлена на рис. 2. В ее состав входят первичный радиолокационный канал (ПРК), вторичный радиолокационный канал (ВРК), аппаратура первичной обработки информации (АПОИ) и коммутирующее устройство (КУ).

В ПРК входят: поляризационные устройства ПУ; вращающиеся переходы ВП, два блока сложения мощностей БСМ1 (2); антенные переключатели АП1 (2, 3); передатчики Прд (2, 3); блок разделения сигналов БРС; приемники Прм 1 (2, 3); система селекции движущихся целей СДЦ; устройство формирования зоны обнаружения ФЗО и контрольный индикатор КИ. Вторичный радиолокационный канал включает в себя: антенную систему ВРЛ АВРЛ; самолетный ответчик типа СОМ-64, используемый в качестве устройства, контролирующего работу ВРК-СО; фидерное устройство ФУ; приемопередающее устройство, используемое в режиме «RBS» ПП; устройство согласования СГ и приемное устройство, используемое в режиме УВД-ПРМ.

Съем и трансляция информации осуществляются с помощью широкополосной радиорелейной линии ШРЛ и узкополосной линии передачи УЛП.

Первичный канал РЛС представляет собой двухканальное устройство и работает на трех фиксированных частотах. Нижний луч ДНА формируется облучателем основного канала, а верхний - облучателем канала индикации высоколетящих целей (ИВЦ). В РЛС реализована возможность одновременной обработки информации в когерентном и амплитудном режимах, что позволяет проводить оптимизацию зоны обзора, представленную на рис. 3.

Границы зоны обнаружения устанавливаются в зависимости от помеховой ситуации. Их выбор определяется импульсами, вырабатываемыми в КИ, управляющими коммутацией в АПОИ и видеотракте.

Участок 1 имеет протяженность не более 40 км. Информация формируется при помощи сигналов верхнего луча. При этом подавление отражений от местных предметов в ближней зоне составляет 15 ... 20 дБ.

На участке 2 используются сигналы верхнего луча при работе приемо-анализирующего устройства в амплитудном режиме и сигналы нижнего луча, обработанные в системе СДЦ, причем в канале нижнего луча используется ВАРУ, имеющая динамический диапазон на 10 ...15 дБ больше, чем в канале верхнего луча, что обеспечивает контроль за местоположением ВС, находящимся под малыми углами места.

Второй участок заканчивается на таком удалении от РЛС, при котором эхо-сигналы от местных предметов, принимаемые нижним лучом, имеют незначительный уровень.

На участке 3 используются сигналы верхнего луча, а на 4 - нижнего луча. В приемо-анализирующем тракте осуществляется режим амплитудной обработки.

Вобуляция частоты запуска РЛС позволяет устранить провалы в амплитудно-скоростной характеристике и устранить неоднозначность отсчета. У ПРДЗ частота повторения зондирующих сигналов 1000 Гц, а у первых двух 330 Гц. Увеличенная частота следования повышает эффективность СДЦ за счет уменьшения влияния флюктуации местных предметов и вращения антенны.

Принцип работы аппаратуры ПРК заключается в следующем.

Высокочастотные сигналы передающих устройств подаются через антенные переключатели на устройства сложения мощностей и далее через вращающиеся сочленения и устройство управления поляризацией к облучателю нижнего луча. Причем на участках 1 и 2 зоны обнаружения используются сигналы первого приемопередатчика, поступающие по верхнему лучу и прошедшие обработку в СДЦ. На 3 - композиционные сигналы, поступающие по обоим лучам и обработанные в амплитудном канале первого и второго приемопередатчиков, а на 4 - сигналы первого и второго приемопередатчиков, поступающие по нижнему лучу и обработанные в амплитудном канале. При отказе любого из комплектов его место автоматически занимает третий приемопередатчик.

Устройства сложения мощностей производят фильтрацию принятых нижним лучом эхо-сигналов и в зависимости от несущей частоты передают их через АП на соответствующие приемо-анализирующие устройства. Последние имеют раздельные каналы обработки сигналов основного луча и луча канала индикации высоколетящих целей (ИВЦ). Канал ИВЦ работает только на прием. Его сигналы проходят поляризационное устройство и после блока разделения сигналов поступают на три приемника. Приемники выполнены по супергетеродинной схеме. Усиление и обработка сигналов промежуточной частоты выполняются в двухканальном УПЧ. В одном канале усиливаются и обрабатываются сигналы верхнего луча, в другом - нижнего.

Каждый из аналогичных каналов имеет два выхода: после амплитудной обработки сигналов и по промежуточной частоте для фазовых детекторов системы СДЦ. На фазовых детекторах выделяются синфазная и квадратурная составляющие.

После СДЦ сигналы поступают в АПОИ, объединяются с сигналами ВРК и далее подаются на аппаратуру отображения и обработки радиолокационной информации. В АС УВД в качестве АПОИ может использоваться экстратор СХ-1000. а в качестве устройств трансляции-модемы СН-2054.