Смекни!
smekni.com

Интеллектуальные датчики (стр. 2 из 14)

6 - интерфейс). Для связи ИД, реал читанных согласно структурным схемам на рис. 1.1 с внешними блоками и управляющей ЭВМ обычно используются последовательные стандартные интерфейсы различных типов.

Развернутая структурная схема ИД представлена на рис.1.2, где 1 - первый и второй преобразователи с фильтрами; 2 - источник питания ячеек помята и электронных блоков; 3 - мультиплексор; 4 - блок управления маршрутами пересылки данных; 5 - блок определения отношения сигнал/шум; 6 - блок регулирования отношения сигнал/шум; 7 -усилитель; 8 - блок управления усилением (АРУ); 9 - аналого-цифровой преобразователь (АЦП); Ю - внутренняя шина датчика; 11 - программируемое постоянное запоминающее устройство (ПШУ) для хранения данных идентификации, коэффициентов калибровки, предыстории изменения операций во времени и др.; 12 - ППЗУ для хранения пр01рамм и другой информации; 13 - память с произвольной выборкой; 14 - микропроцессор; 15 -связной интерфейс (последовательный или параллельный); 16 - портативный пульт управления; 17 - коммуникационная шина или сеть.

Метрологические характеристики интеллектуальных датчиков

Можно указать на следующие особенности использования ИД по сравнению с традиционными датчиками.

Точность измерений зависит от внутренних погрешностей ИП (нелинейности, гистерезиса, недостаточной повторяемости), внешних условий, точности калибровки, степени воспроизводимости результатов, местоположения значения измеряемой величины в диапазоне измерения, точности, обеспечиваемой линиями передачи, приема и обработки сигнала.

Влияние этих фактором приводит к тому, что точность датчики класса 0,25% в реальных условиях составляет всею 1%. Однако точность измерений существенно повышается за счет внутренних вычислений, которые может выполнять ИД. Алгоритмы улучшения статических характеристик ВД позволяют производить коррекцию начального смещения и крутизны для строи» линейных статических характеристик, корректировку масштаба измерительного тракта, линеаризацию статических характеристик табличным методом, аппроксимацию с помошью полиномов, интерполяцию и т.д.

Благодаря возможностям самонастройки датчик выбирает наилучший диапазон измерения и посылает соответствующую информацию на верхний иерархический уровень. В случае выхода за границы диапазона измерений подается аварийный или предупредительный сигнал.

В ИД возможна коррекция влияния помех и различных возмущений за счет реализации дифференциальных методов измерений программными способами, использования итерационных методов обработки для нелинейных зависимостей, применения адаптивных методов коррекции с формированием скорректированною :шачении по результатам последнего измерения.

Интслпектушп.ный датчик надежней традиционных, так как они позволяют:

· упростить измерительный преобразователь, используя возможности его характеристик с помощью программного обеспечения, в том числе корректируя масштабы и внося поправки на температуру с помощью вычислительного устройспиц

· увеличить количество однотипных смертельных ячеек; свести к минимуму аналоговую часть - источник неисправности и искажений;

· ввести системы автоматическою контроля старения комитентов, повышающие надежность датчикав целом (обнаружение перенапряжений, разогрева, избыточного статическою давления и т.п.);

· контролировать состояние окружающей среды для обнаружения отклонений и исключения работы датчика нне установленных пределов; - контролировать работоспособность отдельных элементов и узлов, в том числе напряжения питания ни прецизионных элементах, уровни срабатывания, токи и напряжения смещения; • осуществлять автоматическую само калибровку по внешним или встроенным эталонным источникам.

Программное обеспечение позволяет антоматически управлять процессом измерений: включением/выключением, сменой диапазонов, переключением каналов измерений, частотой калибровки, порядком адресования. Выбор алгоритма, тест-сигналов, точек и времени измерений и др., а также выбор фильтров в соответствии с параметрами помех осуществляется в сооветствии с задачами измерений или по командам управляющей ЭВМ. Связь ИД с управляющей ЭВМ и другими периферийными устройствами реализуется программными способами по общей шине; передача сигналов осуществляется в режимах квитирования, с прерыванием и контролем программных средств, с последовательным и параллельным опросом, п режиме передачи и приема сигналом управления. ИД позволяет обрабатывать результаты измерений с целью сжатия пересылаемой информации, реализуя контроль предельных значений, а также выполняя заданные математические и логические операции в соответствии с поставленной задачей измерения.

Интеллектуальные датчики обеспечивают доступ к внутренней информации, которая может быть использована в цепях диагностики и профилактического обслуживания. Датчик через портативный пульт или посредством дистанционного управления с верхнего иерархического уровня дает оператору сведения о:

1. мгновенных значениях напряжений питания, промежуточных величинах, результатах вторичных измерений;

2.совокупности параметров, 'занесенных и намять перед возникновением неисправности;

3.дате последнего контроля, (калибровки, проверки нуля и т.п.);

4.причинах устраненных отказов;

5.вторичных параметрах, превмеишних допустимые пределы (внутренней температуре, абсолютном давлении и др.).

Интеллектуальные датчики, объединенные микропроцессорами, позволяют поднять на новый качественный уровень возможности создаваемых средств измерений. Идеальным уровнем «интеллектуалыикггн» датчика является интеграция его функций, которая не приводит к увеличению общих материальных затрат на разработку и создание средств измерений.

1.2 Обработка сигнала датчика

Несмотря на то, что сигнал на выходе чувствительного элемента может быть слабым, передаваемый сигнал должен иметь высокий уровень и, по возможности, лежать в подходящем диашпоне значений для того, чтобы дойти до основных устройств в неискаженном виде и упростить вычисление измеряемой неличины. Поэтому, в общем случае, сигнал сенсора должен пройти предварительную обработку, которая позволяет осуществи! ь многие важные задачи (рис.1.3), такие как:

· специальные меры обеспечения безопасности;

· соединение с другими компонентами последовательно, параллельно или в замкнутом контуре;

· усиление сигнала;

· масштабирование,

· линеризация

· преобразование сигнала

В настоящее время вошло в практику преобразование сигнала датчики п цифровую форму в самом датчике. В силу возрастающего применения распределенных систем с шинной архитектурой это становится нее более необходимым. В дополнение к ран рузке системы в целом достоинством янляется и то, что данные измерения могут передаваться без потери точности иезинисимо от расстояния между датчиком и устройствами обработки данных более высокою уровня. Переносфункций обработки сигналов с аппаратуры на программное обеспечение упрощает повышение точности измерений. Производственные отклонения можно учитывать путем простой параметризации вместо того, чтобы проводим, механическую или электрическую подстройку. Используя физические или Mintмагические модели, описывающие поведение датчика, можно проводить более точные измерении, учитывая влияние различных факторов. В зависимости от физической природы измеряемой величины датчики делятся на две группы: датчики плекзрических величин, и датчики неэлетричюских величин, К первой группе относятся датчики, реагирующие на изменение напряжения, тока, частоты, мощности, ко иторой- дзршки, реагирующие на изменение температуры, давления, крутящего момент, частоты вращения и т.д. По роду выходной величины датчики делятся на электрические и неэлектрические. Электрические н зависимости от характера выходной величины подразделяют на два типа- параметрические и генераторные. Параметрические датчики преобразуют неэлектричсские измеряемые величины в параметры электрических цепей L, С, R. Такие преобразователи включаются в различные измертильные схемы, которые имеют дополнительный источник питания. В генераторных происходи! преобразование энергии измеряемой неличины в ЭДС постоянного или переменною тока Системы, состоящие из одного датчика, могут давать лишь частичную информацию о состоянии внешней среды, тогда как системы с множеством датчиков объединяют связанные данные от нескольких одинаковых и/или разных датчиком. Смысл применения многосенсорных систем состоит в создании синергстичсских эффектом, понышанпцих качество и доступность информации о состоянии измеряемого объекта. Цель обработки сигналов в многосенсорной системе - получить определенную информацию, используя необходимую совокупность данных измерения. В общем, требуется достичь определенного уровня, например, точности или надежности, коицют нельзя достичь, имея лишь один датчик. Например, для обнаружения присутствия используют ультразвуковые датчики с высокой чувствительностью к шуму, турбулентности воздуха из-за тепловых воздействий и колебаний штор и растений. Микроволновые датчики могут обнаружили, движение объектов вне наблюдаемою помещения или быть введены в заблуждение другими электромагнитными полями (от мобильных телефонов и т.п.). Комбинация обоих типов датчиков и применение специальных процедур обработки сигналов позволяет дост ичь более высокой надежности обнаружения за счет различия зависимостей да пиков от внешних воздействий. Результат свидетельствует о более качественной работе системы из нескольких датчиков по сравнению с системой с одним датчиком Сложная обработка сигналов, осиоваинаи на методах слияния данных может- повысит ь точность измерения более, чем используемый обычно простой пороговый алгоритм. Процесс слияния данных, поступающих от многих датчиков, должна просктироватт^и специально для каждого конкретного случая с учетом специфики применения для тою, чтобы обеспечить правильное определение всех требуемых измеряемых величин или решений (рис.1.4). Типичными подходами тдесь являются теория статистических решении, методы усреднения, калмановская фильтрация - -для слияния неточных данных датчиков; нечеткая логика – для сформулированных на качественном уровне задач и нейронные сети - для задач, где ожидаемому повелению можно обучить, используя набор характеризующих параметров.