Використовують й інші показники якості. Досить часто (особливо в задачах оцінювання параметрів) закритерій якості приймають саму функцію правдоподібності.
Розглянуті показники якості рішення використовують для формулювання критеріїв оптимальності рішень при розв’язанні задач обробки сигналів.
3. Критерії оптимальності рішень у задачі перевірки гіпотез
Розглянемо критерії оптимальності рішень при вирішенні задач перевірки гіпотез.
Байєсівський критерій оптимальності використовує середній ризик (2) і вимагає його мінімізації (у загальному випадку забезпечення нижньої границі):
. (6)Рішення – це гіпотеза
, що забезпечує мінімум середнього ризику. Останній шукається у множині відображень простору спостережень у простір рішень . Нагадаємо, що аргумент функції правдоподібності – це значення параметра (або номер гіпотези). Тому зручно (6) записувати також у вигляді . (7)Критерій мінімуму середньої ймовірності похибки (критерій Зігерта-Котельникова або критерій ідеального спостерігача). У цьому разі використовується показник якості рішення (3). Цей критерій оптимальності вимагає мінімізації величини середньої ймовірності похибки:
, (8)або
Критерій називають також критерієм „ідеального спостерігача”, тому що можна уявити собі, що деякий спостерігач задає вагову матрицю
так, що вона завжди нульова , коли приймається правильне рішення. А коли виникає похибка,він не цікавиться тим, як саме вона виникла, і завжди задає однаковий вагомий коефіцієнт .Іноді зручніше використовувати замість
максимум імовірності правильного рішення (4): . (9)Критерій максимуму апостеріорної ймовірності. Згідно з показником якості (5) критерій оптимальності рішення задається так: серед гіпотез
вибирається такий номер „ ”, що забезпечується максимум у (5): . (10)Мінімаксний критерій оптимальності. Введені вище критерії по суті вимагали знання розподілу
переданого сигналу, що дає змогу ввести ймовірності гіпотез . Коли розподіл невідомий, можна врахувати найгірший випадок – мінімізувати середній ризик в умовах найгіршого (з точки зору величини ризику) розподілу: . (11)У теорії статистичних рішень доводиться, що рішення буде таке саме, якщо використовувати умовні ризики
та вимагати, щоб рішення шукалось за умови
. (11а)Мінімаксний критерій приводить до байєсівського рішення в умовах найгіршого розподілу параметра (переданого сигналу).
Критерій оптимальності Неймана-Пірсона. Спинимося детальніше на ілюстрованому прикладі приймання сигналів амплітудної маніпуляції. Тут задається лише дві гіпотези. Гіпотезу
називають основною, а – альтернативною. Ставиться задача перевірки гіпотези проти альтернативи . Часто гіпотези несиметричні і зручно основну увагу приділити одній з них. Саме таку гіпотезу у математичній статистиці називають основною і позначають .У задачі перевірки гіпотези
проти альтернативи мають місце дві похибки – умовні ймовірності:та
.Ситуація, коли приймається гіпотеза
за істинної гіпотези , означає, що дійсно сигналу немає (існує тільки шум), але приймається рішення про існування сигналу. Тому називають умовно імовірністю хибної тривоги. У математичній статистиці її називають умовною ймовірністю похибки першого роду. У разі, коли приймається гіпотеза при істинній гіпотезі (фізично сигнал існує), то приймається хибне рішення, що сигналу немає. Тому називають умовною ймовірністю пропуску сигналу, у математичній статистиці її називають умовною ймовірністю похибки другого роду.Крім імовірностей похибок
та у задачі перевірки гіпотези проти альтернативи розглядають також імовірності правильних рішеньта
.Критерій оптимальності рішення Неймана-Пірсона використовує два показники якості рішень – умовні ймовірності хибної тривоги та пропуску цілі. У класичній літературі з теорії статистичних рішень ця обставина не підкреслюється. Але на рівні сучасної теорії вибору рішень (чи оптимізації систем і пристроїв) про це треба пам’ятати.
Критерій Неймана-Пірсона вимагає знаходження рішення, що забезпечує мінімальне значення умовної ймовірності пропуску цілі
(12)при обмеженні умовної ймовірності хибної тривоги
.Замість (12) часто використовують умову максимізації ймовірності правильного рішення про наявність цілі:
при обмеженні . (12а)4. Критерії оптимальності в задачі оцінювання параметрів
Критерії оптимальності в задачі оцінювання параметрів розподілів ймовірностей мають деякі відмінності порівняно із задачею перевірки гіпотез. Різниця у тому, що параметр функції правдоподібності
у задачах вибору гіпотез має дискретний характер (і значення параметра ототожнюється з гіпотезами), а в задачах оцінювання параметрів він звичайно набирає значення з континуальної множини. Це відбивається як на вигляді показників (критеріїв) якості рішення, так і на вигляді критеріїв оптимальності. Спинимося на них.Показник середнього ризику. Середній ризик – це середнє значення функції втрат:
(13)Тут припускається, що вимірність вектора параметрів
у загальному випадку не збігається з вимірністю вектора спостережень .Показник середньоквадратичної похибки. В окремому випадку квадратичної функції втратсередній ризик приводить до середньоквадратичної похибки оцінювання скалярного параметра
. (14)Величина цієї похибки і використовується як показник якості рішення.
Показник апостеріорної щільності ймовірності. Для завдання цього показника (критерію) якості використовують відповідну формулу Байєса: