Смекни!
smekni.com

Принципы и алгоритмы ИИС (стр. 2 из 4)

Nср – среднее число изделий, исправно работающих в начале и в конце интервала ∆t;

t – промежуток времени, следующий после t, на котором определяется интенсивность отказа.

3. Средняя наработка до первого отказа – среднее значение наработки изделия в партии до первого отказа.

,

где Тi – время работы i-го изделия до первого отказа;

N0 – число испытываемых изделий.

Микропроцессор

Микропроцессор – законченная вычислительная система, интегрирующая память на кристалл ЭВМ; предназначена для обработки информации и управления этим процессом. Микропроцессор выполняется на основе одной или нескольких БИС (больших интегральных схем).

Устройство реализуется на кристалле площадью не более 4–6 см2.

АЛУ предназначена для выполнения арифметических и логических операций над данными в виде двоичных чисел. Данные, с которыми производятся операции называются операндами. Обычно в операции участвуют 2 операнда, один из которых находится в специальном регистре-аккумуляторе, а другой в регистрах РЗУ или в памяти микропроцессора.

УУ предназначено для выработки сигналов управления, обеспечивающих работу блоков микропроцессора. В состав УУ входит регистр команд ПК, в котором фиксируется выполняемая в данный момент команда.

РЗУ содержит несколько регистров общего назначения (РОН) и, в частности, счётчика команд СК, в котором фиксируется количество команд.

Команды, обеспечивающие реализацию заданного алгоритма обработки информации, образуют программу и выполняются в пошаговом режиме в строго записанной последовательности.

Каждая команда программы содержит информацию о том, что нужно делать, с какими командами, куда поместить результат операции (ШД, ША, ШУ).

Команды, адреса и операнды микропроцессора вызываются двоичными многоразрядными числами, представленными, как и во всех цифровых устройствах, комбинацией двух уровней напряжения.

Современный микропроцессор оперирует 8-, 16-разрядными числами. Программы могут быть записаны двумя способами:

1. Непосредственно в виде двоичных чисел;

2. При помощи языков программирования.

Техническое, математическое и метрологическое обеспечение АИИиК

Эталон – средство измерения, обеспечивающее воспроизведение и хранение единицы с целью передачи её размера нижестоящим средствам измерений по поверочной схеме.

Метрологическое обеспечение предусматривает процедуры оценки метрологических характеристик, ускоренной самопроверки на основе соответствующих образцов и технических средств, алгоритмов и программ.

В широком смысле метрологическое обеспечение включает СИИ и К, теорию и методы измерений, испытаний, контроля, теорию и методы обеспечения точности средств измерений, методы и средства обеспечения достоверного контроля параметров и характеристик технических устройств, организационно-технические вопросы обеспечения единства и точности измерений, включая НТД.

Алгоритмы предусматривают выполнение процедур измерения физических величин, обработки результатов, реализации экспериментов и т.д.

Программы обеспечивают функционирование устройств АИИиК, в них содержаться инструкции по самоориентации комплексов и самоконтролю их блоков, а также подпрограмм для выполнения типовых процедур и решения типовых задач.

Измерительное средство – техническое устройство, используемое, используемое при измерении и имеющее нормированные метрологические характеристики (меры, измерительные приборы, установки, комплексы, системы).

Вычислительные устройства – совокупность функционально взаимосвязанных средств, обеспечивающих измерение, сбор, вычислительную обработку и распределение измерительной информации а системе управления промышленными предприятиями и объектами. В качестве вычислительных средств при АИИиК могут быть использованы: аналоговые, цифровые, гибридные вычислительные устройства, микро- и миниЭВМ.

В общем случае, используемые вычислительные средства обеспечивают автоматизацию процедур с момента начала измерения сигналов, поступающих в измерительный канал от датчика физических величин, до момента принятия решения об истинности результатов измерения.

Основные функции вычислительных средств, используемые в АИИиК:

1. Фильтрация – выявление и устранение отклонения сигналов от заданного уровня, внесение поправок, учёт влияния внешних факторов, вычисление результатов косвенных, совокупных и совместных измерений, определение статистических характеристик измеряемых величин, оценка достоверности результатов измерений.

2. Накопление и хранение полученной информации, хранение программ, реализацию алгоритмов обработки, хранение планов проведения эксперимента в зависимости от полученных результатов, сервисная обработка измерительной информации.

3. Управление блоками (по программе) с целью организации запроса, приоритетов, диалог режима с операторами, обращение к памяти, контроль работоспособности блоков, включая самопроверку метрологических характеристик.

Основные положения по созданию и функционированию АС

Создание АС осуществляется в плановом порядке в соответствие с Действующими положениями и нормативными актами. Для вновь строящихся, реконструированных, расширяющихся, технически-перевооружаемых и др. объектов автоматизации, для которых предусматриваются работы по кап. строительству, создание АС включается в планы и в проекты по этому виду работ.

Работы по созданию АС на действующих объектах выполняются на основании договоров.

Планирование и разработку АС осуществляют аналогично правилам, установленным для продукции единичного производства. ТЗ на создание АС является основным документом, определяющим порядок создания и требования к АС. Разработку АС и её приёмку проводят в соответствии с ТЗ. Создание АС осуществляют специализированные научные институты, проектно-конструкторские организации в соответствии с ТЗ.

При созданных АС обращают внимание на следующее:

1. Интеграцию экономических и инородных процессов, технических, программных и организационно-методических средств.

2. Развитие системного и программно-целевого подхода, планирование и автоматизация работы объекта в процессе получения и обработки информации на объекте автоматизации.

3. Углубление взаимодействия человек и вычислительной техники на основе диалоговых методов и средств, автоматизирующих рабочих мест и интеллектуальных терминалов.

4. Построение сетей ЭВМ на базе неоднородных вычислительных средств.

5. Индустриализация процессов создания АС, развития САПР и _ типовых элементов АС.

6. Построение информационного фонда в виде распределённой по объектам и уровням иерархии автоматизированной базы данных.

7. Минимизация документооборота, замену его передачей текущей информации по каналам связи и представление её на устройствах отображения.

8. Максимальная автоматизация, формирование первичных исходных сведений.

9. Создание гибких систем управления, способных адаптироваться к изменяющимся условиям производства.

Показатели надёжности ремонтируемых (восстанавливаемых) изделий

Процесс эксплуатации восстанавливаемых изделий отличается от процесса невосстанавливаемых тем, что наряду с потоком отказов элементов изделий присутствуют стадии ремонта отказавших элементов, т.е. поток восстановления элементов. Характеристики надёжности восстанавливаемых систем описываются потоком отказов элементов и потоком восстановления элементов.

Для описания потоков отказов используется также интенсивность отказов (λ) и среднее время наработки на отказ (Тср).

1. Параметром потока отказов называется среднее количество отказов ремонтируемого изделия в единицу времени, взятое для рассматриваемого промежутка времени:

,

где

– число отказов в интервале
;

– количество работавших изделий в промежутке
;

2. Наработка на отказ – среднее значение наработки ремонтируемого изделия между отказами:

,

где n – число изделий в партии;

– среднее значение наработки на отказ i-го изделия;

,

где

– среднее время исправной работы i-го изделия между (j-1) и (j+1);

m – число отказов i-го изделия

Сложные устройства, состоящие из большого числа элементов, обычно подчиняются экспоненциальному закону надёжности, при котором вероятность безотказной работы рассчитывается:

,

где e = 2,72;

λ1 λn – интенсивность отказов комплектующих изделий.

Параметры АЦП и ЦАП

1. Максимальное напряжение: Umax – входное для АЦП, выходное для ЦАП.

2. Число разрядов кода n.

3. Разрешающая способность:


где

– максимальный вес входного кода