Смекни!
smekni.com

Спектры элементарных возбуждений в двупериодических одномерных системах (стр. 2 из 2)

Волновую функцию электрона, влетающего в первую цепочку, представим в виде линейной комбинации этих волновых функций:

(2.7)

Рассмотрим теперь эволюцию этой волновой функции во времени. По правилам квантовой механики, получим:

, (2.8)

где под Δ для удобства обозначено |Γkp|.

Учитывая ортогональность функций Ψ1 и Ψ2, которые для электронов имеют вид блоховских функций, следуя [6], получим для средней скорости первого электрона на уровне Ферми:

(2.9)

или, с учетом того, что


(2.10)

То есть, скорость электрона на уровне Ферми является суперпозицией двух слагаемых, в которых присутствуют скорости на уровне Ферми для первой изолированной цепочки и для второй. Аналогично, для второй цепочки:

(2.11)

Рассмотрим два граничных случая, когда

и
.

В первом случае усреднением заменяем

и
на 1/2:

(2.12)

Во втором случае

,
:

(2.13)

(2.14)

Сразу видно, что во втором случае в выражении для времени релаксации электронов не будет никаких изменений, не изменится вид формулы (2.2), а значит, и формула Ландауэра не изменится.

Рассмотрим подробнее первый случай. Проводимость системы из двух параллельных одностеночных трубок определяется выражением:

(2.15)

Проводимость двустеночной трубки:

(2.16)

Видно, что и в этом случае формула Ландауэра остается справедливой.

Выводы

Целью данной работы было исследование электронного спектра и проводимости в двустеночных нанотрубках. С помощью упрощенной модели, представляющей собой две параллельные регулярные цепочки атомов, было показано, что в таких нанотрубках происходит перекрытие зон, что приводит к изменению положения уровня Ферми, а также его расщеплению. Величина этого расщепления была определена численно в программе, листинг которой приведен в приложении. При реалистичных значениях параметров расщепление оказалось достаточно малым, порядка 10-5 эВ. При этом изменяется и скорость электронов на уровне Ферми. Очевидно, что в такой идеальной системе рассеивание электронов должно происходить на контактах, поэтому время релаксации будет зависеть только от средней скорости движения электронов. Было проанализировано выражение для средней скорости движения электронов и показано, что в предельных случаях высоких и низких частот в двустеночных системах формула Ландауэра остается справедливой.

Список использованных источников

1. Wildoer J.W.G., Venema L.C., Rinzler A.G., Smalley R.E., Dekker C. Electronic structure of atomically resolved carbon nanotubes // Nature – 1998. – V.391. – P.59 -62.

2. Odom T.W., Huang J.L., Kim P., Lieber C.M. Structure and electronic properties of carbon nanotubes // J. Phys. Chem. B – 2000. – V.104(13). – P.2794-2809.

3. Тищенко С.В. Зонная структура и межзонные переходы в углеродных нанотрубках: Дис., 01.04.02 – Одесса, 2007. - 100 с.

4. Landauer R. Electrical resistance of disordered one-dimensional lattices // Phyl. Mag. – 1970. – V.21 – No 172. – P.863-867.

5. Buttiker M., Imry Y., Landauer R., Pinhas S. Generalized many-channel conductance formula with application to small rings // Phys. Rev. B – 1985. – V.31. – P.6207-6215.

6. Ансельм А.И. Введение в теорию полупроводников – М.: Наука, 1978. – 616 с.

Приложение А. Алгоритм программы для вычисления величины расщепления в спектре упрощенной модели двуслойной нанотрубки в виде двух параллельных цепочек атомов

Содержимое файла stdafx.h:

#include <stdio.h>

#include <tchar.h>

#include <math.h>

class Complex

{

public:

double real;

double image;

Complex() {}; // Конструктор по умолчанию

Complex(double r) { real = r; image = 0; } // Конструктор

Complex(double r, double i) { real = r, image = i; } // Конструктор

~Complex() {} // Деструктор

double absolute() // Модуль комплексного числа

{

return sqrt(real * real - image * image);

}

Complex operator+(Complex &); // Перегрузка оператора сложения

Complex operator-(Complex &); // Перегрузка оператора вычитания

Complex operator*(Complex &); // Перегрузка оператора умножения

Complex operator/(Complex &); // Перегрузка оператора деления

};

Содержимое файла Gammakp.cpp:

#include "stdafx.h"

#include <iostream>

#include <math.h>

using namespace std;

#define N 30

#define a 1.0

#define b 1.1

#define d 0.5

// Перегрузка +

Complex Complex::operator+(Complex &fp1)

{

fp1.real = real + fp1.real;

fp1.image = image + fp1.image;

return fp1;

}

// Перегрузка -

Complex Complex::operator-(Complex &fp1)

{

fp1.real = real - fp1.real;

fp1.image = image - fp1.image;

return fp1;

}

// Перегрузка *

Complex Complex::operator*(Complex &fp1)

{

double i, j;

i = real * fp1.real - image * fp1.image;

j = real * fp1.image + fp1.real * image;

fp1.real = i;

fp1.image = j;

return fp1;

}

// Перегрузка /

Complex Complex::operator/(Complex &fp1)

{

double k, i, j;

k = fp1.real * fp1.real + fp1.image * fp1.image;

i = (real * fp1.real + image * fp1.image) / k;

j = (fp1.real * image - real * fp1.image) / k;

fp1.real = i;

fp1.image = j;

return fp1;

}

int main()

{

Complex Gkp;

double m;

int i,j;

for(i=0;i<N;i++)

for(j=0;j<N;j++)

{

Gkp.real=0;

Gkp.image=0;

Gkp.real=Gkp.real+1/(double)N*exp(-1/a*sqrt(pow(i*a-j*b,2)+d*d))*cos(6.28*i-6.28*j);

Gkp.image=Gkp.image-1/(double)N*exp(-1/a*sqrt(pow(i*a-j*b,2)+d*d))*sin(6.28*i-6.28*j);

}

Gkp.real=pow(Gkp.absolute(),2);

cout<<"Gkp"<<" "<<Gkp.real<<"&bsol;n";

getchar();

}