Смекни!
smekni.com

Источники электропитания (стр. 2 из 6)

Рисунок 1.1 - Функциональная схема ИВЭП

На вход подается переменное напряжение Uc, которое с помощью трансформатора TV изменяется до требуемой величины. Кроме того, трансформатор осуществляет гальваническую развязку источника выпрямленного напряжения нагрузочного устройства, что позволяет получать с помощью нескольких вторичных обмоток различные значения напряжений, гальванически не связанные. После трансформатора переменное напряжение с помощью выпрямителя В преобразуется в пульсирующее напряжение. В выпрямленном напряжении помимо постоянной составляющей, присутствует и переменная, которая с помощью сглаживающего фильтра Ф снижается до требуемого уровня, так, что напряжение на выходе фильтра имеет очень малые пульсации. Установленный после фильтра стабилизатор постоянного напряжения СН поддерживает неизменным напряжение UНна нагрузке при изменении значений выпрямленного напряжения или сопротивления нагрузки.

1.2 Трансформатор

Трансформатором называют статическое электромагнитное устройство, предназначенное для преобразования посредством магнитного поля электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при неизменной частоте.

На замкнутом магнитопроводе расположены две обмотки. К одной обмотке с числом витков w1, которая носит название первичной, подводится электрическая энергия от источника питания Ист; от другой—вторичной обмотки с числом витков w2 — энергия отводится к приемнику Пр. Все величины, относящиеся к этим обмоткам (токи, э.д.с. и т. д.), называются первичными или вторичными и имеют соответствующие индексы 1 и 2.

Под действием подведенного переменного напряжения u1 в первичной обмотке возникает ток i1 и возбуждается изменяющийся магнитный поток. Этот поток индуцирует э.д.с, e1 и е2 в обмотках трансформатора. Э.д.с. e1 уравновешивает основную часть напряжения источника u1, э.д.с. е2 создает напряжение и2 на выходных зажимах трансформатора. При замыкании вторичной цепи возникает ток i2, который образует собственный магнитный поток, накладывающийся на поток первичной обмотки. В результате создается общий поток Ф, сцепленный с витками обеих обмоток трансформатора и определяющий в них результирующие э.д.с. е1 и е2. Стрелки напряжения u1 и тока i1 представляют первичную обмотку как приемник энергии, Положительное направление потока Ф связано с током i2 правилом правоходового винта. То же правиле определяет положительные направления потока Ф, э.д.с. е1 и е2. Стрелки e2 и i2 вторичной обмотки соответствуют направлениям э.д.с. и тока источника электрической энергии. Стрелка напряжения и2 на зажимах вторичной обмотки, равного напряжению на приемнике, должна совпадать по направлению со стрелкой тока i2. Только учитывая условно-положительные направления электрических величин, можно правильно записать уравнения электрического состояния трансформатора.

Помимо основного (рабочего) потока в магнитопроводе токи обмоток создают в окружающем пространстве магнитное поле рассеяния. Рассматривая принцип действия трансформатора, можно пренебречь этим полем. Одновременно будем пренебрегать активными сопротивлениями обмоток. Трансформатор, для которого приняты эти условия, называют идеализированным.

1.3 Выпрямители

Выпрямители служат для получения постоянного напряжения с помощью преобразования переменного тока электрической сети в постоянное пульсирующее напряжение и сглаживания пульсации при помощи фильтра.

Основными элементами выпрямителя являются: силовой трансформатор для повышения или понижения преобразуемого переменного напряжения, выпрямительный элемент (вентиль) с односторонней проводимостью для преобразования переменного напряжения в пульсирующее и фильтр для сглаживания пульсирующего напряжения.

Выпрямители классифицируют по схеме выпрямления, типу выпрямительного элемента, величине выпрямленного напряжения и назначению. В зависимости от числа фаз выпрямляемого переменного тока и способа присоединения вентилей и потребителя различают схемы выпрямителя однофазного (однополупериодная, двухполупериодная, мостовая, удвоения напряжения) и трехфазного тока (трехфазная однополупериодная, трехфазная мостовая, шестифазная и др.).

Для питания маломощных усилителей низкой частоты и радиоприемников применяют схемы выпрямителя однофазного тока.

Выпрямители характеризуются следующими основными параметрами:

U0 — выпрямленное напряжение до фильтра, определяемое оконечной ступенью УНЧ, требующего наибольшего напряжения;

U — напряжение после фильтра или отдельных его звеньев;

Ic — среднее значение выпрямленного тока (постоянная составляющая) или номинальный выпрямленный ток, определяемый суммой токов анодных и других цепей;

U2 — действующее значение напряжения на вторичной обмотке силового трансформатора;

Uобр — обратное напряжение на вентиле в непроводящую часть периода;

Iмакс— максимальный ток, проходящий через вентиль в проводящую часть периода;

Uпр — прямое падение напряжения на вентиле в проводящую часть периода;

Ртр — расчетная мощность трансформатора;

Uсети — напряжение сети переменного тока;

fп — частота пульсации на выходе выпрямителя (для однополупериодных схем она равна частоте сети, для других схем однофазных выпрямителей — удвоенной частоте сети);

р, %,—коэффициент пульсации, т. е. отношение амплитуды, выраженной гармонической составляющей напряжения (тока) на выходе фильтра выпрямителя (переменной составляющей), к среднему значению напряжения (тока);

р0—коэффициент пульсации на входе фильтра;

kс — коэффициент сглаживания (фильтрации) определяется отношением коэффициентов пульсации на входе и выходе фильтра:

Однополупериодная схема выпрямителя применяется в установках малых (до 10—15 В×А) мощностей. Ее достоинство — простота. Недостатки — относительно большое значение переменной составляющей выпрямленного напряжения и низкая частота ее первой гармоники, что усложняет схему сглаживающего фильтра; низкий коэффициент использования трансформатора по мощности, приводящий к увеличению его габаритов и стоимости; большая величина обратного напряжения на вентиле.

Однополупериодная схема выпрямителя применяется в тех случаях, когда нормы пульсации не очень жесткие, большие нагрузочные сопротивления, например, для питания анодов электроннолучевых трубок.

В качестве вентилей используют кенотроны, полупроводниковые диоды, селеновые шайбы и газотроны. При последовательном соединении нескольких полупроводниковых диодов для равномерного деления обратного напряжения параллельно каждому из них включают резисторы сопротивлением 50—100 кОм.

Двухполупериодная схема выпрямителя применяется для получения малых и средних мощностей выпрямленного тока и состоит из двух вентилей (или одного двуханодного кенотрона), трансформатора с двумя обмотками с одинаковым количеством витков, образуемыми выводом средней точки.

Достоинство схемы — возможность получения больших токов и малых пульсации, что приводит к упрощению сглаживающего фильтра.

Мостовая схема выпрямителя применяется преимущественно с полупроводниковыми или селеновыми вентилями в выпрямителях малой и средней мощности. Вторичная обмотка трансформатора подключается к одной диагонали моста, составленного из четырех вентилей (или четырех групп последовательно соединенных вентилей), а нагрузка — ко второй диагонали.

Достоинство мостовой схемы выпрямителя — большой коэффициент использования трансформатора. Во всех современных ламповых радиоприемниках применяют мостовые схемы выпрямления.

Выпрямители с умножением напряжения используют для повышения выпрямленного напряжения при заданном на вторичной обмотке трансформатора, а также при отсутствии трансформатора. Практически можно получить большую кратность умножения, однако ограничиваются умножением в 2, 3 и 4 раза. Обычно применяют параллельную схему выпрямителя с удвоением напряжения. В данной схеме установлены конденсаторы с рабочим напряжением, равным половине выходного.

Расчетные соотношения напряжений и токов в схеме выпрямителя приведены в приложении А

1.4 Сглаживающие фильтры

Уменьшение величины пульсации выпрямленного напряжения осуществляется при помощи сглаживающих фильтров, состоящих из одного или нескольких Г-образных звеньев LC или RC. Выбор того или иного звена или их сочетания определяется величиной пропускаемого через фильтр выпрямленного тока и коэффициента фильтрации (характера нагрузки).

Основными параметрами сглаживающих фильтров являются коэффициент сглаживания kс и падение напряжения постоянного тока DU. Коэффициент сглаживания многозвенного фильтра равен произведению коэффициентов сглаживания каждого звена.

Коэффициент пульсации на входе фильтра зависит от схемы выпрямителя и характера нагрузки, а также от величины емкости конденсатора С0.

Сглаживающие фильтры, состоящие из одного или нескольких Г-образных RC-звеньев, применяют при выпрямлении тока не более 20 мА. Расчет падении напряжения, В, сопротивления, Ом, и емкости, мкФ, однозвенного RС-фильтра может быть осуществлен по следующим соотношениям: