Рисунок 1.9 - Модель БДПТ
Коэффициент передачи импульсного датчика частоты вращения ИДЧ равен
(рисунок 1.10).Рисунок 1.10 - Модель ИДЧ
Объединяя приведенные модели отдельных узлов электропривода, в [1] получены две структурные схемы контура ФАПЧВ при различных способах демодуляции выходного сигнала ИЧФД γ (рисунок 1.11а и 1.11б).
Рисунок 1.11 - Полная схема контура ФАПЧВ
Наличие в структурной схеме электропривода нелинейного элемента НЭ позволяет рассматривать электропривод с фазовой синхронизацией как систему с переменной структурой. Для анализа динамических процессов в таком электроприводе в [1] выделяются режимы работы, в которых структура системы регулирования остается неизменной, и проводится анализ динамики электропривода в каждой из этих областей.
В зависимости от рабочего участка НЭ в [1] выделяются три режима работы электропривода:
1. Режим насыщения импульсного частотно-фазового дискриминатора при разгоне электропривода (fоп>fос). Выходной сигнал ИЧФД
является непрерывной функцией и не зависит от входного сигнала . Происходит разгон электродвигателя с максимальным ускорением εm (если пренебречь моментом на валу электродвигателя). Структурная схема электропривода в этом режиме работы преобразуется в структурную схему разомкнутой системы регулирования с постоянным задающим воздействием (рисунок 1.12а, где , - ошибки регулирования по углу и угловой скорости).а)
б)
в)
Рисунок 1.12 - Структурные схемы электропривода:
а) режим насыщения; б) в линейном режиме (в качестве демодулятора используют ФНЧ); в) в линейном режиме (в качестве демодулятора используют СВХ)
2. Режим фазового сравнения ИЧФД соответствует пропорциональному режиму работы электропривода (fоп=fос). Работа электропривода происходит на линейном участке характеристики НЭ. Неоднозначность нелинейного элемента и насыщение в этом режиме можно не учитывать. В результате НЭ заменяется линейным звеном с коэффициентом передачи, равным единице, и структурная схема контура ФАПЧВ (рисунок 1.11) преобразуется в схему, приведенную на рисунке 1.12 б.
В этом режиме работы электропривода, при выполнении условий линеаризации нелинейных элементов, входящих в состав фазового дискриминатора и демодулятора, система управления (рисунки 1.12 б и 1.12 в) могут быть приведены к линейной системе автоматического регулирования, представленной на рисунке 1.13. Фильтр нижних частот в этой схеме исключен, так как его постоянная времени обычно выбирается из условия
, где , ωс - частота среза замкнутой линеаризованной системы регулирования, поэтому он практически не оказывает влияния на процессы в электроприводе, и им можно пренебречь.Рисунок 1.13 - Линеаризованная структурная схема электропривода в пропорциональном режиме работы.
3. Режим насыщения импульсного частотно фазового дискриминатора при торможении электропривода (fоп<fос). Выходной сигнал ИЧФД
непрерывен и зависит от входного сигнала . Происходит торможение электродвигателя с максимальным ускорением εm (если пренебречь моментом на валу электродвигателя). Структурная схема электропривода в этом режиме работы преобразуется в структурную схему разомкнутой системы регулирования с постоянным задающим воздействием (рисунок 1.12 а).В цифровых системах автоматического управления осуществляется квантование сигналов по времени и уровню (преобразование непрерывного в дискретные через равные промежутки времени, но при этом выделяется ближайший уровень непрерывного сигнала).
Квантование по времени делает всю систему управления дискретной (рисунок 1.14), а по уровню нелинейной. Разрядная сетка современных ЭВМ такова, что влиянием квантования по уровню можно пренебречь. Это делает всю систему линейной и позволяет использовать для ее расчета математический аппарат исследования импульсных систем.
Цифровой сигнал, отражающий преобразованный непрерывный сигнал в дискретный, представляет собой двоичное число - совокупность логических нулей и единиц. При исследовании цифровых систем автоматического управления этот реальный сигнал заменяют его математической абстракцией - решетчатой функцией.
Рисунок 1.14 - График квантования сигнала по времени
Понятие решетчатой функции лежит в основе математического описания дискретных систем и позволяет осуществлять переход к дискретному аналогу дифференциальных уравнений - разностным уравнением (уравнения в конечных разностях). Эти уравнения, определяющие связь между значениями решетчатой функции с помощью конечных разностей, являются аналогами производных в дифференциальных уравнениях [8].
Первая прямая разность:
(1.2)получается путем вычитания из последующего значения решетчатой функции (будущего) текущего значения.
Первая обратная разность:
(1.3)получается путем вычитания из текущего значения предыдущего.
Первая разность является аналогом первой производной непрерывной функции.
Для решения разностных уравнений широко применяется Z-преобразование, оно вытекает из дискретного преобразования Лапласа решетчатых функций.
Преобразование Лапласа
. (1.4)Дискретное преобразование Лапласа для решетчатых функций
. (1.5)Z-преобразование решетчатой функции
, (1.6)где
,n= 0, 1, 2, ….
.Таким образом, решетчатая исходная функция заменяется ее изображением (Z-преобразованием). Переход от оригинала к изображению позволяет заменить решение разностных уравнений - решением алгебраических.
В литературе [8] приводятся примеры аппроксимации линейных регуляторов заменой операции дифференцирования на первую разность. При этом имеется возможность использовать накопленный опыт работы с аналоговыми регуляторами и применять известные правила настройки регуляторов.
Для определения структуры цифрового КУ аппроксимируем передаточную функцию аналогового регулятора, настроенного на оптимальную работу. Исследуем влияние изменения коэффициентов регулятора, на качество управления и характер переходного процесса, и определим значения коэффициентов, при которых обеспечиваются наилучшие динамические характеристики электропривода.
Так же ставится задача исследования устойчивости электропривода с разработанным регулятором.
Для расчета линейного регулятора, используем модель электропривода, приведенную на рисунке 2.1 Так как в электроприводе с фазовой синхронизацией главной целью является отработка фазового рассогласования по углу поворота вала, то в качестве выходной координаты удобно принять ошибку по углу Δα. В качестве оптимального режима, примем критический переходный процесс [1].