Министерство образования и науки Украины
Запорожский национальный технический университет
По дисциплине:
"Методы и способы исследования ЭС"
2003
1. Классификация вибропреобразователей
Источником сигнала измерительной информации о значениях измеряемых параметров вибрации является виброизмерительный преобразователь (вибропреобразователь). Современные вибропреобразователи, в основном, построены на принципах электрических измерений не электрических величин (сигналов), когда механические колебания преобразуются в электрические. Виброизмерительные преобразователи классифицируются по ряду независимых признаков:
• по значению – измерительные преобразователи могут предназначаться для измерения различных параметров вибрации. В зависимости от измеряемого параметра вибрации вибропреобразователи могут называть: акселерометрами – для измерения ускорения и велосиметрами – для измерения скорости.
• по связи (взаимодействию) воспринимающей (чувствительной) части с объектом измерения различают контактные и бесконтактные преобразователи. Применение контактных или бесконтактных преобразователей зависит от размеров и массы вибрирующих изделий. Если размеры и массы изделий соизмеримы или меньше размеров и масс контактных преобразователей, то необходимо применять бесконтактные измерительные преобразователи.
• по принципу измерения относительно системы отсчета измерительные преобразователи могут быть основаны: на определении координат отдельных точек изделия относительно неподвижной системы отсчета, с которой ведутся наблюдения – кинематический принцип: на создании искусственной неподвижной системы отсчета в виде инерционного элемента, соединяемого с вибрирующим изделием через упругий подвес (мягкую пружину) – динамический принцип. При осуществлении динамического принципа измерения параметров вибрации изделия, производимое в условиях установившегося процесса, относительно инерционного элемента будет абсолютным. Преобразователи построенные по динамическому принципу часто называют инерционными.
• по принципу преобразования механических колебаний в другие виды колебаний различают активные и пассивные измерительные преобразователи. В активных измерительных преобразователях выходной сигнал получается за счет входной механической энергии и постоянного источника энергии. К активным преобразователям относятся фотоэлектрические, гамма-квантовые, емкостные и др. В пассивных измерительных преобразователях выходной сигнал получается только за счет входной механической энергии. К пассивным преобразователям относятся: пьезоэлектрические, электретные и др.
• по роду измеряемых компонентов вибрации различают преобразователи для измерения линейных компонентов колебаний (однокомпонентные, двухкомпонентные, трехкомпонентные), а также для измерения угловых компонентов.
• по направлению приложения силы при механических воздействиях различают измерительные преобразователи направленного и ненаправленного действия. В инерционных преобразователях ненаправленного действия упругий подвес обеспечивает сохранение положения и ориентации в абсолютном пространстве. По этому они могут выдавать все шесть компонентов вибрации. В преобразователях направленного действия обеспечивается измерение только одного линейного или углового компонента вибрации.
• по физическому явлению доложенному в основу метода измерения параметров механических колебаний, измерительные преобразователи можно объединить в следующие основные группы: механические, акустические (ультразвуковые), электрические, электромагнитные (радиотехнические), оптические (световые) и радиационные.
2. Основные параметры вибропреобразователей
Основные параметры, характеризующие вибропреобразователи (виброметры) и позволяющие осуществить их сравнение и выбор наиболее приемлемых для измерений являются следующие:
• измеряемый параметр линейной вибрации: перемещение (5), скорость (V), ускорение (а), резкость (г), частота (Г), коэффициент нелинейных искажений (р) и т.д.
• диапазон значений измеряемого параметра вибрации, для которого нормированы допускаемые погрешности. При рассмотрении вибропреобразователя совместно с виброметром минимальное значение измеряемого параметра определяется напряжением шума согласующего усилителя
действительный коэффициент преобразования вибропреобразователя – отношение изменения сигнала на выходе вибропреобразователя к вызывающему его изменению параметра вибрации на входе:
где: АЕ – изменение величины сигнала на выходе;
AV – изменение измеряемого параметра вибрации.
При линейной зависимости между Е и V:
• минимальное изменение измеряемого параметра вибрации, вызывающее соответствующее изменение показаний виброметра, называется порогом чувствительности.
• рабочий диапазон частот гармонических вибраций определяется диапазоном частот, в пределах которого неравномерность амплитудно-частотной характеристики по отношению к базовой частоте 1000 Гц не превышает установленного значения.
• основная погрешность вибропреобразователя (виброметра) определяется:
а) при постоянном значении величины измеряемого параметра вибрации в пределах измерения рабочего диапазона частот (неравномерность амплитудно-частотной характеристики);
б) при различных значениях величины измеряемого параметра на неизменной частоте в пределах установленного диапазона измерений (нелинейность амплитудной характеристики).
• коэффициент поперечного преобразования вибропреобразователя отношение изменения сигнала на выходе вибропреобразователя, установленного перпендикулярно направлению действующих колебаний, к вызывающему его изменению параметра вибрации на входе;
где АЕ – изменение величины сигнала на выходе;
AV – изменено измеряемого параметра вибрации.
При линейной зависимости между Е и V:
где Е – максимальное значение сигнала при ряде измерений в различных положениях вибропреобразователя.
• относительный коэффициент поперечного преобразования вибропреобразователя – отношение коэффициента поперечного преобразования к коэффициенту преобразования:
• возможность использования вибропреобразователя при температурных, влажностных и других климатических воздействиях.
• независимость измерения от внешних электрических и магнитных полей.
• возможность использования вибропреобразователя для измерений в эксплуатационных, лабораторных и производственных условиях, а также для метрологических целей.
3. Основные критерии оценки бесконтактных вибропреобразователей
Для сравнения бесконтактных методов измерения параметров вибрации и основанных на них виброизмерительных преобразователей целесообразно пользоваться, помимо перечисленных параметров, следующими критериями оценки: характер физических полей или излучений, взаимодействующих в процессе измерений; величина зазора между вибрирующим изделием и чувствительным элементом вибропреобразователя, а в ряде случаев и источником (излучателем) колебательной энергии; погрешность установки зазора; разрешающая способность метода измерений; критичность к качеству механической развязки вибратора и вибрирующего изделия с источником (излучателем) колебательной энергии или чувствительным элементом вибропреобразователя.
Характер взаимодействия используемых физических полей колебательной энергии (механических или электрических волновых явлений) с поверхностью материала изделия существенно зависит от условий их распространения. При этом, в случае использования энергий электрического или магнитного полей (радиотехнического диапазона частот) необходимо учитывать электрические и магнитные свойства изделия.
Зависимость возможности реализации ряда бесконтактных методов измерений параметров вибрации от характера взаимодействия используемой для измерений колебательной энергии с материалом изделия приводит в ряде случаев к необходимости искусственного придания поверхности изделия определенных свойств (создание зеркального отражения, обеспечения электропроводимости и т.д.). Если при этом происходит заметное изменение габаритов и масс испытываемых изделий, то данный метод нельзя рассматривать как бесконтактный.
Величина зазора между вибрирующим изделием и чувствительным элементом вибропреобразователя или источником (излучателем) колебательной энергии для ряда методов является весьма критичной, поскольку от нее зависит максимальная величина измеряемой амплитуды перемещения, а также порог чувствительности вибропреобразователя. Для некоторых методов погрешность измерений зависит не только от величины зазора, но и от соотношения величины максимальной амплитуды перемещения (Sa max) и величины зазора So. Причем в ряде случаев имеются определенные требования к величине данного соотношения (Sa max/So). Например, для бесконтактного электретного вибропреобразователя Sa max/So < 0,1. Порог чувствительности для ряда методов определяется максимальной величиной зазора, при которой сигнал на выходе вибропреобразователя оказывается соизмеримым с уровнем шумов или минимальное изменение измеряемого параметра вибрации вызывает изменение показаний виброметра, соизмеримое или меньше числа отсчета измеряемой величины. Зависимость точностных характеристик некоторых методов измерений от предельных значений зазора, а ряде случаев от точности его установки, приводит к необходимости введения в рассмотрение параметра – погрешность установки зазора.