Смекни!
smekni.com

Блок управления и контроля автоматизированного тестера параметров радиоэлементов (стр. 3 из 8)

+ ( 5e6, -78.4, 181.9) (10e6, -72.7, 184.5) (30e6, -63.1, 183.7)

G21 2 3 FREQ {V(1,3)}=

+ ( 5e6, -18.7, -20.8) (10e6, -20.0, -31.9) (30e6, -25.5, -44.2)

G22 2 3 FREQ {V(2,3)}=

+ ( 5e6, -67.4, 63.4) (10e6, -63.3, 56.3) (30e6, -59.4, 54.1)

.ends

При табличном задании управляемых источников в частотной области для каждого значения частоты указывается модуль передаточной функции в децибелах и ее фаза в градусах.

Макромодель на основе S–параметров. В диапазоне СВЧ большее распространение имеют линейные макромодели транзисторов на основе S–параметров, которые в этом диапазоне частот проще измерять, чем Y–параметры. Напомним, что для 4-полюсника на рисунке 2.3 справедливо следующее уравнение в терминах S–параметров:


, (2.13)

где

– падающие и отраженные волны мощности;

Z

– волновое сопротивление тракта, в котором измерены S–параметры транзистора.

Из этих соотношений вытекают уравнения для входного и выходного напряжений, в которые входят управляемые источники напряжения:

, (2.14)

где

На основе этой системы уравнений составляется линеаризованная схема замещения СВЧ–транзистора (рисунок 2.5). В качестве примера приведем описание макромодели арсенид-галлиевого полевого транзистора 3П343 в диапазоне частот 4...12 ГГц при напряжении затвора 2 В и токе стока 10 мА:

.subckt 3P343 2 1 3

RZ1 1 11 50

RZ2 2 21 50

E11 11 12 FREQ {V(1,3)+V(1,11)} =

+ (4e9, -0.35, -28.3) (5e9, -0.54, -33.2) (6e9, -0.58, -35.9)

+ (7e9, -1.21, -41.9) (8e9, -1.01, -67.1) (9e9, -2.85, -56.9)

+ (10e9, -4.29, -32.8) (11e9, -1.94, -56.9) (12e9, -0.63, -65.2)

E12 12 3 FREQ {V(2,3)+V(2,21)}=

+ (4e9, -32.5, 77.0) (5e9, -29.5, 62.0) (6e9, -29.2, 72.4)

+ (7e9, -27.3, 65.0) (8e9, -23.5, 15.0) (9e9, -29.0, 66.1)

+ (10e9, -23.4, 36.6) (11e9, -25.4, 61.7) (12e9, -22.1, 40.4)

E21 21 22 FREQ {V(1,3)+V(1,11)}=

+ (4e9, 0.82, 149.8) (5e9, 2.30, 131.1) (6e9, 0.74, 134.3)

+ (7e9, 1.26, 129.0) (8e9, 0.43, 105.5) (9e9, 0.11, 123.2)

+ (10e9, 3.92, 87.5) (11e9, 2.40, 110.1) (12e9, 4.10, 85.0)

E22 22 3 FREQ {V(2,3)+V(2,21)}=

+ (4e9, -2.16, -26.4) (5e9, -1.21, -49.1) (6e9, -2.27, -45.1)

+ (7e9, -2.21, -34.4) (8e9, -2.62, -54.5) (9e9, -2.73, -52.7)

+ (10e9, -3.74, -17.2) (11e9, -3.48, -65.1) (12e9, -4.44, -62.4)

.ends

Рисунок 2.5 - Макромодель транзистора на основе S–параметров

2.5.3 Факторные модели

Под факторной моделью будим понимать аналитическую макромодель, сформированную по результатам измерения параметров РЭ в процессе реализации активного факторного эксперимента. Каждый параметр в этом случае может быть выражен полиноминально



или мультипликативно



где

Gi - аттестуемый параметр;

pi - постоянная факторного уравнения;

gij - парциальное факторное уравнение, представляющее аналитическую

зависимость от j фактора;

xj – фактор представляющий функцию gij.

Таким способом могут быть аттестованы как статические параметры, например в виде вольт-амперных характеристик (ВАХ), так и динамические параметры, например в виде Y-параметров. В первую очередь факторное пространство определяет частотный диапазон, режим электропитания по постоянному току и температура. Могут быть добавлены и другие факторы, способные влиять на значение параметров модели.

В общем виде факторная модель может быть выражена двумя уравнениями. Уравнение ВАХ

I=I(X) (2.17)

и уравнением

Y=Y(w,X) (2.18)

где I – вектор токов, определяющих рабочую точку;

Х – вектор факторов за исключением частоты;

Y – матрица проводимостей;

w - угловая частота.

Каждую из вещественных составляющих уравнений (2.17) и (2.18) определяют в виде аналитических зависимостей (2.15) или (2.16).

Факторная модель наиболее полно отвечает аналитическим макромоделям, описание которых приведено в п. 2.5.2. Измерение статических и физических параметров факторных моделей может быть автоматизировано при использовании способа по АС СССР № 1317370 /3/ устройств по АС СССР №1084709 /5/. Способ /3/ и устройства /6,7/ не имеет принципиальных отличий по частотному диапазону и могут быть применены в СВЧ диапазоне. Использование этих устройств при применениях к СВЧ имеет определенные преимущества, т.к. для реализации основных измерительных операций не обязательно применение согласованного волнового тракта. Однако и в этом случае при конструировании измерительных цепей, которые содержат ИГ необходимо учитывать специфику цепей СВЧ диапазона.

Информация, представленная уравнениями (2.17) и (2.18) в принципе достаточна для описания макромоделей, приведенных в /8/. Например, для идентификации модели Эберса-Молла нужно расширить систему (2.17) и (2.18) добавив данные об инверсном режиме включения транзистора. При этом уравнение (2.18) используется для определения нелинейных зависимостей емкостей переходов транзистора.


3 Тестер для измерения параметров радиоэлектронных элементов

3.1 Методика измерения

3.1.1 Измерение статических параметров

В интегрированных САПР для расчета транзисторных схем в режиме большого сигнала, как правило, используют модели Эберса-Молла или Гуммеля-Пуна, основанные на суперпозиции прямого и инверсного включения транзистора /2,10/. В этом случае неизбежны искажения моделируемых вольтамперных характеристик (ВАХ), так как в основе их описания заложены свойства идеального p-n перехода, смещенного в прямом или обратном направлении.

В этой связи классическое определение ВАХ связанное с непосредственным измерением токов и напряжений на входных и выходных электродах транзистора имеет принципиальное значение как для корректировки указанных выше моделей, так и для изучения тонкой структуры процессов в транзисторе /11-13/.

В процессе планирования эксперимента при моделировании радиоэлементов важную роль имеет выбор непосредственно измеряемой системы параметров с точки зрения совместимости с требованиями к определяемой модели, методам и техническим средствам измерения в первую очередь должны быть реализованы два главных условия, во-первых, сокращение времени и материальных затрат на этапе сбора и обработки первичной информации, во-вторых, широкое использование алгоритмических методов измерения, позволяющих при реализации простых методов измерения получить сложные модели путем глубокой математической обработки информации.

Измерение ВАХ транзистора можно комплексно автоматизировать использовав методику измерения по А.С. СССР №1084709 /13/. При этом предоставляется возможным в процессе измерения ВАХ так же определять данные, достаточные для вычисления Y-параметров транзистора в каждой из точек спектра плана эксперимента, который реализуется в процессе измерения ВАХ. При этом аттестируется система ВАХ

Iб=Iб (Ik,Uk);

Uб=Uб(Ik,Uk),

где Iб и Uб – ток и напряжения базы транзистора соответственно;

Ik и Uk – ток и напряжение его коллектора.

При расчетах электронных устройств система практически не используется, однако при определении ее параметров относительно просто автоматизировать измерительный процесс и совместить определение статистических и динамических параметров на одной технологической установке 15.

Расширяя факторные пространства в температурную область из системы (3.1) получаем систему

Iб = Iб (Iк,Uк,To); (3.2)

Uб = Uб(Iк,Uк,To), (3.3)

где To – температура.

На практике наиболее широко используют ВАХ соответствующие системам Н-параметров (параметры ВАХ ток Iб и напряжение Uк) или Y-параметров (аргументы ВАХ напряжения Uб и Uк), т.е. системы

Iк = Iк (Iб,Uк); (3.4)

Uб = Uб(Iб,Uк), (3.5)

Iк = Iк (Uб,Uк); (3.6)

Iб = Iб(Uб,Uк). (3.7)

Если базовая система (3.1) соответствует полиминальной модели, то ее факторные функции (ФФ) имеют вид /5,14/

Iб = k1 + Iб (Iк) + Iб(Uк); (3.8)

Uб =k2 + Uб(Iк) + Uб (Uк), (3.9)

где k1 и k2 – постоянные факторных функций (ПФФ), а индексы 1 и 2 указывают на различие этих коэффициентов в первом и втором уравнениях системы; Iб (Iк), Iб(Uк), Uб(Iк), Uб (Uк) - аналитические функции, представляющие собой элементарные факторные функции (ЭФФ).

Iк = k1 + Iк (Iб) + Iк(Uк); (3.10)

Uб =k2 + Uб(Iб) + Uб (Uк) (3.11)

Iк = k1 + Iк (Iб) + Iк(Uк); (3.12)

Iб =k2 + Iб(Uб) + Uб (Uк). (3.13)

Преобразования параметров ФФ (3.8)-(3.9) в ФФ (3.10)-(3.11) или (3.13)-(3.14) было предложено производить по табличным значениям ЭФФ системы (3.8)-(3.9).

Определение ЭФФ Iк (Iб) и Uк (Uб) не представляет сложности, так как они представляют собой обратные функции ЭФФ Iб (Iк) и Uб (Uк). Для определения ЭФФ Uб (Iб) можно использовать ЭФФ Uб (Iк) в которую нужно подставить табличные значения ЭФФ Iк (Iб). Таким же способом по ЭФФ Uб (Uк) и Iк (Iб) находим ЭФФ Iк (Uб(Uк)) и на последнем этапе ЭФФ Iб (Uб) определяем через ЭФФ Iб (Iк) и Iк (Uб), т.е. в виде Iб (Iк(Uб)).