Смекни!
smekni.com

Линейная решетка вибраторных антенн (стр. 1 из 4)

Министерство образования Российской Федерации

Рязанская государственная радиотехническая академия

Кафедра радиоуправления и связи

Пояснительная записка

к курсовой работе по дисциплине:

"Антенны и устройства СВЧ"

на тему: Линейная решетка вибраторных антенн

Рязань 2004 г.


Содержание

Введение

1. Анализ технического задания

2. Расчетная часть

2.1 Расчет диаграммы направленности одиночного излучателя

2.2 Выбор амплитудного распределения и числа элементов ФАР

2.3 Предельно допустимая мощность в излучателе, его анализ на пробой

2.4 Расчет ДН решетки в режиме нормального излучения

2.5 Коэффициент усиления антенны

2.6 Расчет ДН решетки в режиме сканирования

2.7 Оценка широкополосности антенны

3. Схема питания

4. Конструкция излучателя и ее описание

Заключение

Список использованных источников


Введение

Одной из актуальных задач антенной техники является создание антенн с управляемыми диаграммами направленности. Свойство сканирования позволяет осуществлять сопровождение движущихся объектов и определение их угловых координат. При этом в большинстве практических случаев необходимо, чтобы острая направленность антенны сочеталась с высокой скоростью перемещения антенного луча в пространстве, движением его по любой заданной программе, обзором весьма широкого сектора пространства, автоматическим управлением и т.д. Перечисленным требованиям удовлетворяют многоэлементные решетки излучателей с электрически управляемыми диаграммами направленности.

В общем случае сканирование бывает трех типов: механическое, электромеханическое и электрическое. Электрический способ управления положением диаграммой направленности обладает наибольшим быстродействием и применяется в тех ситуациях, когда скорости слежения, обеспечиваемой двумя другими способами, бывает недостаточно, например при управлении воздушным транспортом в современных аэропортах.

При электрическом управлении перемещением луча амплитудно-фазовое распределение возбуждения в раскрыве регулируется с помощью электронно-управляемых устройств, например полупроводниковых или ферритовых фазовращателей и коммутаторов. Быстродействие сканирования здесь ограничивается инерционностью, обусловленной постоянными времени электрических цепей, причем эта инерция на несколько порядков меньше механической инерции в двух первых способах.


Рис.1 Структурная схема ФАР

Переход от механического сканирования к электрическому приводит к усложнению конструкции антенны, связанному с применением ФАР. Наличие большого числа фазовращателей, увеличение протяженности тракта, использование делителей мощности и других элементов увеличивают тепловые потери в антенне и фазовые ошибки в ее раскрыве, что приводит к уменьшению коэффициента антенны и росту стоимости. Поэтому переход к АР с электрическим сканированием целесообразен только в тех строго аргументированных случаях, когда механический способ не обеспечивает требуемых характеристик управления, при выполнении задачи одновременного сопровождения нескольких целей в пространстве или при необходимости адаптации к помеховой обстановке при наличии нескольких прицельных помех.

На рис. 1 показана структурная схема электрически управляемой ФАР. Мощность с выхода передатчика поступает в распределительно-управляющее устройство. Здесь осуществляется деление этой мощности в нужной пропорции между излучателями решетки, а также обеспечивается создание требуемых фазовых сдвигов между токами в них. Для решения этих задач в распределительно-управляющих устройствах применяются делители мощности, фазовращатели, коммутаторы, аттенюаторы и другие элементы фидерного тракта.

Для формирования диаграммы направленности в одной плоскости применяются линейные антенные решетки из антенных элементов, расположенных вдоль прямой линии. Управление положением антенного луча такой решетки, как правило, осуществляется путем изменения фазового сдвига между токами в соседних излучателях на одну и ту же величину.

Формируемая решеткой диаграмма направленности зависит от диаграмм направленности отдельных излучателей, их взаимного расположения и числа, а также от амплитудно-фазового распределения поля между излучателями. Данная работа предполагает использование симметричных вибраторов в качестве элементов ФАР (см. рис.2).

Рис.2 Плоская решетка вибраторных антенн

Вибраторные излучатели широко применяются в фазированных антенных решетках в метровом, дециметровом и сантиметровом диапазонах волн. Широкое применение вибраторных ФАР обусловлено рядом их достоинств: относительно малой массой, устойчивостью к атмосферным внешним воздействиям, возможностями складывания и быстрого разворачивания в мобильных радиотехнических системах, получения произвольной поляризации и управления поляризационной характеристикой излученного поля, управления ДН отдельных излучателей, благодаря включению управляемых нагрузок.


1. Анализ технического задания

Проектирование антенны в данной работе предполагается осуществить методом неполного математического моделирования. Неполнота метода заключается в приближенном характере применяемых в расчетах формул, в использовании при расчете различных допущений, позволяющих упростить математические выражения, а также в нерассмотрении некоторых факторов, влияющих на режим работы реальной антенны. В целом, использование математических моделей при проектировании реальных антенн существенно сокращает объём экспериментальных исследований, связанных с разработкой излучателей, а в ряде случаев и исключает их.

В техническом задании предложено спроектировать линейную ФАР из вибраторных излучателей, настроенную на длину волны

при максимально допустимой мощности в антенне
, а также с заданным уровнем боковых лепестков
. Длине волны
соответствует частота
. Сектор сканирования и ширина диаграммы направленности в горизонтальной и вертикальной плоскостях не заданы, их следует определить в расчете. Конструктивная часть должна учитывать заданную длину решетки
и требование к сканированию в H-плоскости . Также в работе необходимо показать конструкцию одного излучателя, который при определении предельно допустимой мощности должен быть исследован на пробой. Антенну предполагается использовать не только в настроенном режиме, поэтому нужно определить полосу частот, в которой параметры антенны будут удовлетворять поставленной задаче, а также условиям эксплуатации.

Значение мощности в антенне говорит о том, что ее предполагается использовать в режиме передачи, следовательно, следует учесть специфику этого режима как при проектировании фидерного устройства, так и всего устройства в целом.

Конструктивно решетка выполняется в виде линейки симметричных вибраторов, ориентированных в пространстве определенным образом. Положение элементов антенны относительно всей решетки зависит от плоскости, в которой должно осуществляться сканирование. По заданию луч должен перемещаться в H-плоскости, соответственно, излучатели должны быть ориентированы таким образом, чтобы ось антенны лежала в H-плоскости каждого из излучателей.

С целью обеспечения однонаправленного излучения вибраторы устанавливаются над металлическим экраном. При высотах установки симметричного вибратора над экраном около

и более влияние экрана на сопротивление излучения может быть учтено приближенно, если сделать предположение об идеальной проводимости металла, из которого выполнен экран. При расчете диаграммы направленности излучателя следует учесть влияние высоты подвеса вибратора над экраном на его направленные свойства. Расстояния между элементами решетки выбираются одинаковыми. Поскольку длина решетки задана, то это расстояние определяется выбором числа излучателей.

Примерный вид решетки изображен на рис. 3.


Исходя из доступности теоретического материала элементом антенной решетки выберу полуволновый (

) вибратор. Чтобы упростить последующий расчет вибратор буду считать тонким, то есть его диаметр
.

Поскольку в реальных вибраторах ток по плечам протекает несимметрично, то во избежание искажений диаграммы направленности, падения КНД и ухудшения согласования (из-за изменения входного сопротивления излучателя) важно выбрать симметрирующее устройство, которым может служить четвертьволновая щель, U-колено и др.

Следует отметить, что необходимый уровень боковых лепестков не может быть обеспечен при равноамплитудном распределении токов, питающих излучатели, так как оно дает уровень не ниже

. Для снижения уровня боковых лепестков (необходим
), и, соответственно, повышения КНД требуется применить неравномерное распределение амплитуд. При этом зависимость коэффициента усиления антенны от выбранного распределения учитывается при помощи коэффициента использования поверхности раскрыва.