Иногда вместо коэффициента усиления µ пользуются обратной величиной — проницаемостью D:
Очевидно, что D < 1. Проницаемость показывает, какой доле действия сетки на катодный ток эквивалентно действие анода. Если, например, µ = 10, то D = 0,1. Это значит, что действие анода на катодный ток равноценно 0,1 действия сетки, т. е. действие анода в 10 раз слабее.
Термин «проницаемость» введен впервые немецким ученым Г.Г. Баркгаузеном, внесшим большой вклад в теорию электронных ламп, и подчеркивает роль экранирующего действия сетки. Можно сказать, что проницаемость характеризует «пропускную способность» сетки для электрического поля анода. Чем реже сетка, тем легче через нее проникает от анода к катоду электрическое поле и тем больше значение D. Зато коэффициент µ соответственно уменьшается. Не следует считать проницаемость D «пропускной способностью» сетки для электронного потока. Это является грубой, ошибкой. Конечно, более густая сетка является большим препятствием для электронного потока, но отсюда вовсе не следует, что D показывает, какая часть потока проходит сквозь сетку.
Особый интерес представляют процессы в триоде при отрицательном напряжении сетки, так как приемно-усилительные лампы обычно работают в этом режиме. В пространстве сетка — катод отрицательный заряд сетки создает тормозящее поле, которое противодействует ускоряющему полю, проникающему от анода. Потенциальный барьер у катода при. этом повышается и катодный ток уменьшается. При некотором отрицательном сеточном напряжении ток уменьшается до нуля, т. е. лампа «запирается». Такое отрицательное напряжение сетки называют запирающим (ug зап). При этом поле сетки в пространстве сетка - катод настолько повышает потенциальный барьер, что все электроны, вылетающие из катода, возвращаются на него. Если же при ug < 0 запирания лампы еще нет, то это означает, что электроны, имеющие значительные начальные скорости, все же преодолевают потенциальный барьер и летят к аноду.
Запирающее напряжение сетки невелико по сравнению с анодным напряжением, так как сетка действует сильнее анода. Например, у триода, имеющего µ = 20, при ua = 100 В запирающее напряжение составляет - 5 В. При µ = 20 анодное напряжение 100 В по своему действию эквивалентно сеточному, напряжению 5 В. Поэтому, подав на сетку иg зап = -5 В, можно полностью скомпенсировать влияние анода.
Итак, сравнительно небольшое отрицательное напряжение сетки может значительно уменьшить анодный ток и даже совсем его прекратить.
Положительное сеточное напряжение создает ускоряющее поле, которое складывается с полем, проникающим от анода. Результирующее поле понижает потенциальный барьер. Число электронов, преодолевающих его, увеличится. Возрастет и катодный ток. Часть электронов при этом неизбежно притянется к сетке и в ее цепи возникнет сеточный ток, который почти всегда нежелателен. Он бесполезен и во многих случаях оказывает вредное влияние на работу лампы. Если положительное напряжение сетки значительно меньше анодного напряжения, сеточный ток невелик и во многих случаях им можно пренебречь. Чем гуще сетка и чем больше ее положительное напряжение, тем больше сеточный ток.
Так как сетка действует гораздо сильнее анода, то сравнительно небольшое положительное напряжение сетки вызывает значительное возрастание анодного ока. Например, пусть триод имеет µ = 20 и при напряжениях ug = 0 и ua = 100 В анодный ток равен 10 мА. Предположим, что для увеличения анодного тока до 20 мА надо при неизменном сеточном напряжении удвоить анодное напряжение, т е. подать на анод 200 В. Но при µ = 20 анодному напряжению 100 В равноценно сеточное напряжение 5 В. Поэтому вместо увеличения анодного напряжена 100 В можно подать на сетку +5 В, и тогда анодный ток возрастет до 20 мА.
Итак, увеличение положительного напряжения сетки сопровождается ростом анодного и сеточного токов.
При больших положительных напряжениях сетки ток сетки настолько возрастает, что анодный ток иногда может даже уменьшаться.
Изменяя сеточное напряжение от отрицательного, запирающего лампу, до некоторого положительного, можно изменять анодный ток в широких пределах от нуля до максимального значения. Таково управляющее действие сетки. Важно, что значительные изменения анодного тока получаются при сравнительно небольших изменениях сеточного напряжения. Нужны в µ раз большие изменения анодного напряжения для того, чтобы получить такие же изменения анодного тока, Иначе говоря, небольшие изменения сеточного напряжения равноценны в µ раз большим изменениям анодного напряжения. Это основное свойство триода позволяет использовать его для усиления электрических колебаний.
Значительное влияние на работу триода оказывает так называемый островковый эффект. Он состоит в том, что из-за неоднородной структуры сетки поле, создаваемое сеткой, также неоднородно и влияет на потенциальный барьер в разных местах неодинаково. Поэтому высота потенциального барьера различна в разных местах у катода. Особенно сильно сказывается островковый эффект при приближении лампы к запиранию. Кроме того, чем ближе сетка к катоду и чем она реже, тем сильнее островковый эффект.
Токораспределение
При положительном напряжении сетки наблюдается токораспределение, т. е. распределение катодного тока между сеткой и анодом. Если напряжение анода выше напряжения сетки, то часть электронов попадает на сетку, а электроны пролетевшие сквозь сетку, летят к аноду. Такой режим называют режимом перехвата. В этом режиме ток сетки значительно меньше анодного тока. Если же напряжение сетки примерно одинаково с напряжением анода или выше его, то многие электроны, пролетевшие сквозь сетку, в пространстве сетка – анод тормозятся, сильно искривляют свои траектории, снижают до нуля продольную составляющую скорости и возвращаются на сетку. Подобный режим называют режимом возврата. Очевидно, что в режиме возврата всегда существует и перехват электронов сеткой
причем электрон 3, искривляя свою траекторию под действием сетки, не смог проскочить мимо сетки и попал на нее. Пролетевшие сквозь сетку электроны 5 и 6 попадают на анод, а электрон 4 возвращается на сетку. Электрон 7 возвращаясь к сетке, пролетает мимо ее проводов, попадает в промежуток сетка - катод, тормозится там, снова возвращается к сетке и только тогда попадает на нее.
При ua = 0 и иg > 0 между сеткой и анодом возникает скопление электронов и второй потенциальный барьер II (первый барьер I у катода). Почти все электроны, проскочившие сетку, возвращаются на нее, так как не могут преодолеть второй потенциальный барьер. Поэтому при ua = 0 ток сетки имеет наибольшее значение. Лишь сравнительно небольшое число электронов преодолевает второй потенциальный барьер и попадает на анод, создавая начальный анодный ток.
Если теперь на анод подано положительное напряжение, то второй потенциальный барьер понижается, больше электронов его преодолевает и анодный ток возрастает. Скопление электронов в области второго потенциального барьера вместе с анодом образует систему, подобную диоду. Поле анода действует на это скопление электронов без ослабления, и уже при небольших положительных анодных напряжениях ток анода резко возрастает, а ток сетки резко падает, поскольку все меньше электронов возвращается на сетку. Происходит резкое перераспределение катодного тока между сеткой и анодом, что характерно для режима возврата.
При некотором положительном анодном напряжении второй потенциальный барьер настолько понижается, что уже ни один электрон не возвращается на сетку. Наступает режим перехвата. Дальнейшее увеличение анодного напряжения вызывает рост анодного тока за счет того, что поле анода понижает потенциальный барьер у катода, а также за счет токораспределения. Но теперь анодный ток растет медленнее, так как действие поля анода на потенциальный барьер у катода ослаблено сеткой. Сеточный ток снижается так же незначительно, так число электронов, летящих с катода прямо на проводники сетки, мало зависит от анодного напряжения
В различных лампах в зависимости от конструкции электродов переходу между режимами возврата и перехвата могут соответствовать различные соотношения
Явление токораспределения характеризуют коэффициентом распределения
,Который не может быть больше единицы и показывает, какую долю катодного тока составляет анодный ток.
Коэффициент токораспределения зависит от отношения ua/ug и конструкции сетки. Например, чем гуще сетка, тем меньше kт, так как более густая сетка перехватывает больше электронов. Характер зависимости kт от ua/ug дан на рис. Если ua = 0, то ua/ug = 0 и kт имеет наименьшее значение, близкое к нулю, так как существует лишь небольшой анодный ток за счет начальной скорости электронов. При увеличении ua/ug сначала kT резко возрастает, что соответствует режиму возврата (область I), а при переходе в режим перехвата (область II) растет медленно, приближаясь к единице.
Характеристики
Характеристики триода при работе его на постоянном токе и без нагрузки называются статическими (обычно говорят просто «характеристики»). Теоретические характеристики могут быть построены на основании закона трех вторых, но не являются точными. Действительные характеристики снимаются экспериментально. Они более точны, так как учитывают островковый эффект, неодинаковость температуры в разных точках катода, неэквипотенциальность поверхности катода прямого накала, эффект Шотки, дополнительный подогрев катода анодным током, начальную скорость электронов, контактную разность потенциалов, термо-ЭДС, возникающую при нагреве контакта различных металлов, и другие явления. Закон степени трех вторых все эти явления не учитывает.