Дешифратор, устройство для расшифровки (декодирования) сообщения и перевода содержащейся в нём информации на язык (в код) воспринимающей системы.
Пример дешифратора 2×4
Дешифраторами называются комбинационные устройства, преобразующие n-разрядный двоичный, троичный или k-ичный код в
-ичный одноединичный код, где - основание системы счисления. Логический сигнал, появляется на том выходе, порядковый номер которого соответствует двоичному, троичному или k-ичному коду. Дешифраторы являются устройствами, выполняющими двоичные, троичные или k-ичные логические функции (операции).Двоичный дешифратор работает по следующему принципу: пусть дешифратор имеет N входов, на них подано двоичное слово xN − 1xN − 2...x0, тогда на выходе будем иметь такой код, разрядности меньшей или равной 2N, что разряд, номер которого равен входному слову, принимает значение единицы, все остальные разряды равны нулю. Очевидно, что максимально возможная разрядность выходного слова равна 2N. Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше 2N, и дешифратор является неполным.
Часто дешифраторы дополняются входом разрешения работы E. Если на этот вход поступает единица, то дешифратор функционирует, в ином случае на выходе дешифратора вырабатывается логический ноль вне зависимости от входных сигналов.
Существуют дешифраторы с инверсными выходами, у такого дешифратора выбранный разряд показан нулём.
Функционирование дешифратора описывается системой конъюнкций:
Обратное преобразование осуществляет шифратор.
Дешифраторы. Это комбинационные схемы с несколькими входами и выходами, преобразующие код, подаваемый на входы в сигнал на одном из выходов. На выходе дешифратора появляется логическая единица, на остальных — логические нули, когда на входных шинах устанавливается двоичный код определённого числа или символа, то есть дешифратор расшифровывает число в двоичном, троичном или k-ичном коде, представляя его логической единицей на определённом выходе. Число входов дешифратора равно количеству разрядов поступающих двоичных, троичных или k-ичных чисел. Число выходов равно полному количеству различных двоичных, троичных или k-ичных чисел этой разрядности.
Для n-разрядов на входе, на выходе 2n, 3n или kn. Чтобы вычислить, является ли поступившее на вход двоичное, троичное или k-ичное число известным ожидаемым, инвертируются пути в определённых разрядах этого числа. Затем выполняется конъюнкция всех разрядов преобразованного таким образом числа. Если результатом конъюнкции является логическая единица, значит на вход поступило известное ожидаемое число.
Из логических элементов являющихся дешифраторами можно строить дешифраторы на большое число входов. Каскадное подключение таких схем позволит наращивать число дифференцируемых переменных.
Дешифраторы и преобразователи кодов
Микросхемы К176ИД1 и К561ИД1 (рис. 232) -дешифраторы на 10 выходов. Микросхемы имеют 4 входа для подачи кода 1-2-4-8. Выходной сигнал лог. 1 появляется на том выходе дешифратора, номер которого соответствует десятичному эквиваленту входного кода, на остальных выходах дешифратора при этом лог. 0. При подаче на входы кодов, соответствующих десятичным числам, превышающим 9, активизируются выходы 8 или 9 в зависимости от сигнала, поданного на вход 1 -при лог. 0 на этом входе лог. 1 появляется на выходе 8, при лог. 1 - на выходе 9. Микросхемы не имеют специального входа стробирования, однако для построения дешифраторов с числом выходов более 10 можно использовать для стробирования вход 8 микросхем, так как выходной сигнал может появиться на выходах 0-7 лишь при лог. 0 на входе 8 (рис. 233,234).
Микросхема К176ИД2 (рис. 235) - преобразователь двоично-десятичного кода в код семисегментного индикатора, включает в себя также триггеры, позволяющие запомнить входной код. Микросхема имеет четыре информационных входа для подачи кода 1-2-4-8 и три управляющих входа. Вход S, так же как и в микросхемах К176ИЕЗ и К176ИЕ4, определяет полярность выходных сигналов: при лог. 1 на входе S на выходах лог. 0 для зажигания сегментов, при лог. 0 на вхо-де S - лог. 1 для зажигания. При подаче лог. 1 на вход К происходит гашение индицируемого знака, лог. 0 на входе К разрешает индикацию. Вход С управляет работой триггеров памяти - при подаче на вход С лог. 1 триггеры превращаются в повторители и изменение входных сигналов на входах 1-2-4-8 вызывает соответствующее изме-нение выходных сигналов. Если же на вход С подать лог.0,запоминаются сигналы, имевшиеся на входах перед подачей лог. 0, микросхема на изменение сигналов на входах 1-2-4-8 не реагирует.
Согласование выходов микросхем К176ИД2 с семисегментными индикаторами может производиться так же, как и выходов счетчиков К176ИЕЗ и К176ИЕ4. Ток короткого замыкания микросхем К176ИД2 выше, чем у счетчиков, и численно в миллиамперах примерно равен напряжению питания в вольтах. Поэтому можно непосредственно подключать выходы микросхем К176ИД2 к электродам полупроводниковых семисегментных индикаторов серий АЛ305, АЛС321, АЛС324, помня, конечно, о том, что разброс яркости свечения при этом может быть заметен, а сама яркость может быть меньше номинальной. Микросхема К176ИДЗ имеет ту же разводку выводов и ту же логику работы, что и К176ИД2. Отличие заключается в том, что выходные каскады микросхемы выполнены с «открытым» стоком, поэтому их можно подключать непосредственно к анодам вакуумных люминесцентных индикаторов (рис. 179 с исключенными сборками DA1, DA2). Управляющий вход S микросхемы К176ИДЗ должен быть при этом соединен с общим проводом.
Микросхема 564ИД4 - преобразователь двоично-десятичного кода в код семисегментного индикатора (рис. 235), предназначена прежде всего для управления жидкокристаллическими индикаторами. Так же, как и микросхема К176ИД2, преобразователь позволяет изменять полярность выходных сигналов подачей сигнала управления на вход S - при лог. 0 включению сегментов соответствуют лог. 1 на выходах а - g, при лог. 1 на входе S включению сегментов соответствуют лог. 0. Так же, как и микросхема 564УМ1, микросхема имеет три вывода питания и увеличенную амплитуду выходных сигналов. Это позволяет при напряжении питания большей части микросхем 3...5 В управлять и такими индикаторами, которые требуют напряжение 10-15 В
Подключение жидкокристаллического индикатора к микросхеме 564ИД4 проиллюстрировано на рис. 236. На вход S микросхемы подается меандр с частотой 30...200 Гц, этот сигнал проходит без инверсии на выход Р, увеличиваясь по амплитуде, как это описано выше для микросхемы 564УМ1. При подаче на входы 1-8 двоичного кода знака на выходах, соответствующихсегментам, которые надо индицировать, напряжение начинает меняться в противофазе с напряжением на выходе Р, и эти сегменты становятся темными. На тех же выходах, которые соответствуют неиндицируемым сегментам, напряжение меняется синфазно с напря-жением на выходе Р, и сегменты неотличимы от фона. При подаче на входы кодов чисел 0...9 на индикаторе формируется изображение соответствующих цифр, для кодов 10...13 индицируются буквы «L», «Н», «Р», «А», для кода 14 - знак «минус», при подаче кода 15 происходит гашение индикатора.
Нагрузочная способность микросхемы такая же, как у 564УМ1, что позволяет использовать микросхему для управления светодиодными индикаторами как с общим анодом, так и с общим катодом без токоограничительных резисторов при напряжении питания 5...10 В и с ограничительными резисторами при 10...15 В.
Микросхема 564ИД5 отличается от 564ИД4 наличием на ее входах 1-2-4-8 статического регистра хранения информации со входом записи С и отсутствием выхода Р (рис. 235). Запись в регистр происходит так же, как и в регистр микросхем К176ИД2 и К176ИДЗ, приподаче на вход С импульса положительной полярности, регистр при этом «прозрачен» и пропускает на свои выходы (на входы преобразователя кода) информацию со входов. В режим хранения регистр переходит в момент спада входного импульса.
Интересно отметить, что одноименные входы и выходы микросхем К176ИД2, К176ИДЗ, 564ИД4,564ИД5 разведены на выводы с одинаковыми номерами.
На рис. 237 приведен пример использования микросхем 564ИД5 и 564УМ1 для управления индикатором ИЖКЦ2-5/12. Этот пятиразрядный индикатор предназначен для использования в цифровом частотомере и, кроме возможности индикации пяти цифр, имеет четыре десятичные запятые (сегменты h) и символ «Гц», перед которым могут индицироваться символы «к» или «М».
На микросхемы DD1 - DD5 подводятся коды цифр от микросхем счетчиков, на DD6 - на вход D, соответствующий необходимой запятой - лог. 1, на остальные входы - лог. 0. При подаче импульса положительной полярности на входы С происходит запоминание информации в регистрах микросхем. На входы D двух нижних триггеров микросхемы DD6 поданы разнополярные сигналы, а на входы