Государственный комитет РФ по высшему образованию
ТОМСКИЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ
(ТУСУР)
Кафедра СВЧиКР
Оптимальная волноводно-щелевая решетка
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ ПО КУРСУ
___________.
Руководитель
___________.
Государственный комитет РФ по высшему образованию
ТОМСКИЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ
Задание
Исходные данные :
1. Тип антенны : оптимальная волноводно-щелевая решетка
2. Вид антенны : передающая
3. Рабочая длина волны
4. Уровень токовых лепестков
5. Количество щелей 2N=30
6. Падаваемая мощность P=1кВт
Выполнить :
1. Выбор и расчет антенны
2. Выбор питающей линии
Содержание
1. Введение ............................................................................. 4
2. Расчет питающего волновода ............................................ 6
3. Расчет антенной решетки ................................................... 7
4. Расчет системы возбуждения волновода..........................13
5. Заключение ........................................................................ 17
6. Список литературы ........................................................... 18
Введение
Волноводные-щелевые решетки (ВЩР) являются одним из видов линейных многоэлементных антенн (антенных решеток). Щелевые волноводные антенны применяются также в качестве антенн с механическим, электромеханическим и электрическим сканированием. Наибольшее распространение получили щелевые волноводные антенны, выполненные на основе прямоугольного волновода с волной Н10.
ВЩР обеспечивают сужение ДН в плоскости, проходящей через ось волновода.
Основные достоинства ВЩР :
1. Ввиду отсутствия выступающих частей, излучающая поверхность ВЩР может быть совмещена с внешней поверхностью корпуса летательного аппарата, не внося при этом дополнительного аэродинамического сопротивления (бортовая антенна) ;
2. В них могут быть реализованы оптимальные ДН, т.к. законы распределения поля в раскрыве могут быть различными за счет изменения связи излучателей с волноводом ;
3. Они имеют сравнительно простое возбуждающее устройство, просты в эксплуатации.
Недостатком ВЩР является ограниченность диапазонных свойств. При изменении частоты в несканирующей ВЩР происходит отклонение луча в пространстве от заданного положения, сопровождающееся изменением ширины ДН и ее согласования с питающим фидером.
антенн:
1. Резонансные
2. Нерезонансные
3. Щелевые волноводные антенны с согласованными щелями
Нерезонансными называются антенны, у которых расстояние между соседними щелями в пределах рабочей полосы несколько больше или несколько меньше lв/2. Характерной особенностью нерезонансных антеннявляется более широкая полоса, в пределах которой получается хорошее согласование. Отличие расстояние между соседними щелями от lв/2 приводит к несинфазному возбуждению щелей падающей волной. В результате вдоль антенны получается линейное изменение фазы, что вызывает некоторое отклонение направления максимального излучения от нормали к оси.
Особую группу составляют антенны с согласованными щелями. Щели втаких антеннах располагаются обычно на расстояниях, равных lв/2. В антеннах с согласованными щелями отраженные волны отсутствуют. Распределние поля в раскрыве антенны получается синфазным. Направление максимального излучения на основной волне совпадает с нормалью к оси антенны.
В случае наклонных щелей на боковой стенке волновода дополнительный фазовый сдвиг 180о получается за счет изменения угла наклона щели ±a. Следовательно, результирующий сдвиг по фазе соседних излучателей оказывается равным 360о или 0о независимо от типа нагрузки на конце антенны.
Расчет питающего волновода
Выбираю стандартные значения для размеров волновода : а=23мм., b=10мм.
Выбор размеров волновода производился на основе стандарта Международной электротехнической комиссии. Я остановил свой выбор на волноводе со следующими параметрами:
1. Тип волновода: МЭК-100.
2. Полоса пропускания: 2.50-3.66 см.
3. Внутренние размеры: 22.86х10.16 мм.
4. Толщина стенок: 1.27 мм.
5. Предельная мощность: 0.99 МВт
Рис. 1
На основе этих данных рассчитаем параметры:
(3) (4)Расчет антенной решетки
d=lв/2=19.787мм, при этом
Метод Дольфа позволяет решить следующие две задачи :
1. Определить при заданном числе вибраторов и расстоянии между ними закон распределения амплитуд, при котором относительный уровень боковых лепестков не превосходит заданной величины, а основной лепесток имеет наименьшую ширину, возможную при заданном уровне боковых лепестков.
2. Определить при заданном числе выбраторов и расстоянии между ними закон распределении амплитуд, при котором ширина основного лепестка равна заданной величине, а уровень боковых лепестков имеет наименьшую величину, возможную при заданной ширине основного лепестка.
Антенны, спроектированные по методу Дольфа отличаются тем, что если дискретные вибраторы не обладают направленными свойствами, то уровень всех боковых лепестков получается одинаковым.
Находим длину антенны и проводимость одной щели
Из выбранных параметров для резонанстных антенн, длина антенны получается
(5)
Находим проводимость одной щели. Проводимость одной щели можно найти из условия согласования антенной решетки с питающим волноводом:
. Отсюда(6)
Находим ширину щели
При выборе ширины щели должен обеспечиваться 2-3-кратный запас на электрическую прочность по пробивному запасу напряженности поля для середины щели, где напряженность поля между ее краями Ещ максимальна.(7)
Где Umax – амплитуда напряженности в пучности щели,
Ещ – предельгное значение напряженности поля, при котором наступает пробой (для воздуха при н.у. Епр=30 КВ/см)
(8)
Где Р=1 КВт –подводимая к антенне мощность, gщ=13мСм – проводимость излучения щели, N – число щелей в антенне.
Выражаем и находим ширину щели
(9)
Определим смещение центра щели относительно оси волновода и длину щели l
Используя условие для согласования (6) , выразим параметр х1 для продольных шелей из эквивалентной проводимости.(10)
получим
м (11)
Длина щели определяетса из графика л.[3]. Зависимость резонансной длины продольной щели от ее смещения .