Смекни!
smekni.com

Определение спектра амплитудно-модулированного колебания (стр. 1 из 2)

Пензенский государственный университет

Кафедра «РТ и РЭС»

КУРСОВОЙ ПРОЕКТ

по курсу «Радиотехнические цепи и сигналы»

на тему

«Определение спектра

амплитудно-модулированного колебания»

Задание выполнил студент

группы 01РР2

Чернов С. В.

Задание проверил

Куроедов С. К.

Пенза 2003


Содержание

1. Формулировка задания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Шифр задания и исходные данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. Аналитическая запись колебания UW(t) . . . . . . . . . . . . . . . . . . . . . . . . . 3

4. Определение коэффициентов аn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5. Определение коэффициентов bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6. Определение постоянной составляющей А0. . . . . . . . . . . . . . . . . . . . . 6

7. Определение амплитуд An и начальных фаз Yn . . . . . . . . . . . . . . . . . . 7

8. Временная диаграмма колебания, представляющего собой сумму

найденной постоянной составляющей и первых пяти гармоник

колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

9. Построение графиков АЧХ и ФЧХ ограниченного спектра

колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

10. Аналитическая запись АМ колебания . . . . . . . . . . . . . . . . . . . . . . . . . 9

11. Построение графиков АЧХ и ФЧХ АМ колебания . . . . . . . . . . . . . . 11

12. Определение ширины спектра АМ колебания. . . . . . . . . . . . . . . . . . . 12

1. Формулировка задания

Определить спектр АМ колебания u(t) =Um(t)cos(w0t+y0), огибающая амплитуды которого связана линейной зависимостью с сигналом сообщения Uc(t), т.е. Um(t).=U0+ Uc(t)

(коэффициент пропорциональности принят равным единице).

Сигнал сообщения Uc(t) представляет собой сумму первых пяти гармоник периодического колебания uW(t) (см. раздел 3). Найденный аналитически спектр сигнала сообщения и АМ колебания должен быть представлен в форме амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик. Необходимо кроме того определить парциальные коэффициенты глубины модуляции mn. Несущая частота определяется как w0=20W5, где W5 – частота пятой гармоники в спектре колебания uW(t). Значение амплитуды U0 несущей частоты w0 принимается равным целой части удвоенной суммы

, где Un – амплитудное значение гармоники спектра колебания uW(t).

2. Шифр задания и исходные данные

Шифр задания: 17 – 3

Исходные данные приведены в таблице 1.

Таблица 1.

U1, В

U2, В

T, мкс

t1, мкс

3

3

250

60

Временная диаграмма исходного колебания


3. Аналитическая запись колебания UW(t)

Сначала выполним спектральный анализ заданного колебания uΩ(t). Для этого, пользуясь графической формой колебания и заданными параметрами, запишем его аналитически. Весь период Т колебания разбиваем на три интервала: [0;t1], [t1;t2] и [t2; T] (точка

является серединой интервала [t1; T]). Первый интервал представлен синусоидой, второй и третий – линейными функциями. В общем виде аналитическая запись сигнала будет выглядеть так:

при
,

uΩ(t)=

при
, (1)

при
.

Частота синусоиды

(в знаменателе записан период этой синусоиды).

Значения k1 и b1 определяем из системы уравнений

;

,

получаемой путем подстановки во второе уравнение системы (1) значений времени t1 и

и соответствующих им значений колебания uΩ(t) (uΩ(t1)=0, uΩ(t)=-U2). Решение указанной системы уравнений дает
,
. Аналогично определяем k2 и b2. В третье уравнение системы (1) подставляем значения t2 и T и соответствующие им значения колебания uΩ(t) (uΩ(t2)=-U2, uΩ(T)=0).

;

.

Решив систему, получаем

,

В результате изложенного система уравнений (1) принимает вид

при
,

uΩ(t)=

при
, (2)

при
.

Для дальнейших расчетов определим:

мкс;

рад/с

рад/с

Для разложения сигнала в ряд Фурье вычислим значения аn, bn, Аn и φn первых пяти гармоник.

4. Определение коэффициентов an

Посчитаем каждый из интегралов отдельно:

;

,

первый интеграл интегрируем по частям:

,
,

,
.

;

аналогично интегрируем:

.

Запишем выражение для аn, как функции порядкового номера n гармоник колебания UW(t):

.

Подставляя ранее вычисленные значения k1b1, k2, b2, заданное значение U1 и значения n=1,2,…, находим численные значения пяти коэффициентов an:

В

В

В