Пензенский государственный университет
Кафедра «РТ и РЭС»
по курсу «Радиотехнические цепи и сигналы»
на тему
«Определение спектра
амплитудно-модулированного колебания»
Задание проверил
Куроедов С. К.
1. Формулировка задания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Шифр задания и исходные данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Аналитическая запись колебания UW(t) . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Определение коэффициентов аn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5. Определение коэффициентов bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6. Определение постоянной составляющей А0. . . . . . . . . . . . . . . . . . . . . 6
7. Определение амплитуд An и начальных фаз Yn . . . . . . . . . . . . . . . . . . 7
8. Временная диаграмма колебания, представляющего собой сумму
найденной постоянной составляющей и первых пяти гармоник
колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9. Построение графиков АЧХ и ФЧХ ограниченного спектра
колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10. Аналитическая запись АМ колебания . . . . . . . . . . . . . . . . . . . . . . . . . 9
11. Построение графиков АЧХ и ФЧХ АМ колебания . . . . . . . . . . . . . . 11
12. Определение ширины спектра АМ колебания. . . . . . . . . . . . . . . . . . . 12
1. Формулировка задания
Определить спектр АМ колебания u(t) =Um(t)cos(w0t+y0), огибающая амплитуды которого связана линейной зависимостью с сигналом сообщения Uc(t), т.е. Um(t).=U0+ Uc(t)
(коэффициент пропорциональности принят равным единице).
Сигнал сообщения Uc(t) представляет собой сумму первых пяти гармоник периодического колебания uW(t) (см. раздел 3). Найденный аналитически спектр сигнала сообщения и АМ колебания должен быть представлен в форме амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик. Необходимо кроме того определить парциальные коэффициенты глубины модуляции mn. Несущая частота определяется как w0=20W5, где W5 – частота пятой гармоники в спектре колебания uW(t). Значение амплитуды U0 несущей частоты w0 принимается равным целой части удвоенной суммы
, где Un – амплитудное значение гармоники спектра колебания uW(t).2. Шифр задания и исходные данные
Шифр задания: 17 – 3
Исходные данные приведены в таблице 1.
Таблица 1.
U1, В | U2, В | T, мкс | t1, мкс |
3 | 3 | 250 | 60 |
Временная диаграмма исходного колебания
3. Аналитическая запись колебания UW(t)
Сначала выполним спектральный анализ заданного колебания uΩ(t). Для этого, пользуясь графической формой колебания и заданными параметрами, запишем его аналитически. Весь период Т колебания разбиваем на три интервала: [0;t1], [t1;t2] и [t2; T] (точка
является серединой интервала [t1; T]). Первый интервал представлен синусоидой, второй и третий – линейными функциями. В общем виде аналитическая запись сигнала будет выглядеть так: при ,uΩ(t)=
при , (1) при .Частота синусоиды
(в знаменателе записан период этой синусоиды).Значения k1 и b1 определяем из системы уравнений
; ,получаемой путем подстановки во второе уравнение системы (1) значений времени t1 и
и соответствующих им значений колебания uΩ(t) (uΩ(t1)=0, uΩ(t)=-U2). Решение указанной системы уравнений дает , . Аналогично определяем k2 и b2. В третье уравнение системы (1) подставляем значения t2 и T и соответствующие им значения колебания uΩ(t) (uΩ(t2)=-U2, uΩ(T)=0). ; .Решив систему, получаем
,В результате изложенного система уравнений (1) принимает вид
при ,uΩ(t)=
при , (2) при .Для дальнейших расчетов определим:
мкс; рад/с рад/сДля разложения сигнала в ряд Фурье вычислим значения аn, bn, Аn и φn первых пяти гармоник.
4. Определение коэффициентов an
Посчитаем каждый из интегралов отдельно:
; ,первый интеграл интегрируем по частям:
, , , . ;аналогично интегрируем:
.Запишем выражение для аn, как функции порядкового номера n гармоник колебания UW(t):
.Подставляя ранее вычисленные значения k1b1, k2, b2, заданное значение U1 и значения n=1,2,…, находим численные значения пяти коэффициентов an:
В В В