3. Алгебра комплексных чисел
Комплексным числом называют пару чисел, изображающих вектор на комплексной плоскости. Будем изображать комплексное число заглавной буквой с чертой внизу (
Комплексное число может быть представлено в разных формах:
– показательная форма:
– алгебраическая форма:
Переход от одной формы записи комплексного числа к другой:
Складывать комплексные числа предпочтительно в алгебраической форме либо геометрически по правилу параллелограмма:
Вычитать комплексные числа удобно в алгебраической форме либо геометрически по правилу параллелограмма (вектор разности направлен из конца вычитаемого в конец уменьшаемого):
Умножать и делить комплексные числа удобнее в показательной форме:
Комплексные числа, не зависящие от времени, обозначают заглавными буквами с чертой внизу:
Комплексные числа, которые являются функциями времени, обозначают заглавными буквами с точкой сверху:
Так как
4. Символический метод
Пусть есть комплексное число с линейно изменяющимся во времени аргументом:
Любую синусоидальную функцию времени можно представить в виде проекции на вещественную или мнимую ось соответствующего вращающегося вектора.
Проекция вектора на мнимую ось дает синусоидально изменяющуюся функцию времени:
Вводят специальное обозначение (символы):
Комплекс амплитудного значения деленный на
Комплекс амплитудного или комплекс действующего значения позволяют перейти к мгновенному значению, например:
5. Законы цепей в символической форме
1. Первый закон Кирхгофа
Алгебраическая сумма мгновенных значений токов ветвей, сходящихся в одном узле, равна нулю.
Подставим вместо каждого мгновенного значения тока его представление в виде комплекса амплитудного значения, тогда
Так как в любой момент времени нулю равна сумма проекций вращающихся векторов, следовательно, нулю должна равняться сумма самих вращающихся векторов, т.е. получим
Алгебраическая сумма комплексов амплитудных значений токов ветвей, сходящихся в одном узле, равна нулю.
Поделив на
2. Второй закон Кирхгофа
После аналогичных преобразований получим:
Алгебраическая сумма комплексов амплитудных (действующих) значений напряжений на всех элементах контура, кроме ЭДС равна алгебраической сумме комплексов амплитудных (действующих) значений ЭДС этого же контура.
Однако для самих амплитудных и действующих значений законы Кирхгофа не выполняются.
Список литературы
1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.
2. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)
3. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н. Зуб, С.М. Милюков. Рязань, 2005. 16 с.
4. Теоретические основы электротехники. / Г.И. Атабеков, С.Д. Купалян, А.В. Тимофеев, С.С. Хухриков.-М.: Энергия, 1979. 424 с.
5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.