Смекни!
smekni.com

Основы радиосвязи (стр. 8 из 12)

Полагаем, что потенциал в сечении А равен φ

, а в сечении В φ2. Линию считаем не имеющей потерь, обладающей погонной индуктивностью L1 и погонной емкостью С1 (L1, C1-это соответственно индуктивность и емкость линии длиною 1м).

Воспользуемся интегральной записью II уравнения Максвелла

где магнитный поток представим в виде

(2.21)

L - индуктивность отрезка линии длиной

(2.22)

Контур интегрирования 1-2-3-4 изображён на рис.2.8. Итак, с учётом (2.21)

Поскольку скалярное произведение векторов

=
, где
-угол между векторами
, то

Учитывая связь напряженности электрического поля Е с потенциалом φ, запишем

В результате, принимая во внимание (2.22), получим

или, обозначив

φ2-φ1=

В пределе при

окончательно запишем

(2.23)

Переход от

к
.

Воспользуемся определением силы тока

(2.24)

где q-заряд,

q=CU, C=C1

.

Связь сила тока I с плотностью тока

определяется следующим соотношением

(2.25)

Выберем в качестве поверхности интегрирования цилиндрическую поверхность, охватывающую внутренний проводник коаксиальной линии (рис.2.9)

Тогда

(интеграл по боковой поверхности равен 0).

Из (2.21) получаем


Окончательно при переходе к пределу при z

имеем

(2.26)

Уравнения (2.23) и (2.26) называют телеграфными. Их решение дает возможность найти ток I и напряжение U как функции времени и координаты Х.

2.10 Решение телеграфных уравнений.

Продифференцировав уравнения (2.23) по координате, а уравнение (2.26) по времени и исключив ток I, получим волновое уравнение для напряжения U:

(2.27)

Будем полагать для простоты, что к линии подводятся колебания одной частоты

. Тогда решение выражения (2.27) может быть записано в виде монохроматических волн

(2.28)

где первое слагаемое представляет собой волну, бегущую по линии в положительном направлении оси Х, её называют падающей. Второе слагаемое описывает отражённую волну, распространяющуюся в отрицательном направлении оси Х.

В решении (2.28)

- комплексные амплитуды падающей и отраженной волн,
- постоянная распространения

-скорость волны в линии

Волновое уравнение может быть записано и для тока

его решение имеет вид

Как было отмечено в разделе 1.7, монохроматические волны удобно представлять в виде комплексных амплитуд

Связь между

и
можно получить, подставив в первое телеграфное уравнение (2.23) мгновенные значения напряжения и тока в линии.

В результате будем иметь

(2.29)

- волновое сопротивление линии.

Аналогично можно найти связь

с
:

(2.30)

2.11 Режимы работы линий передачи

Допустим к входу линии передачи длиною

подключен источник гармонического напряжения частотой
, амплитудой
, а в конце линии имеется нагрузка сопротивлением zн (рис.2.9).

Режим бегущей волны

Если в линии отсутствует отраженная волна, то имеем режим бегущей волны

Как видим, в любом сечении z линии передачи имеются колебания напряжения U(t) с одинаковой амплитудой Uпад и колебания тока I(t) с не изменяющейся амплитудой Iпад

Мгновенная фаза колебаний

зависит от координаты.

Особенностью режима бегущей волны является постоянство сопротивления линии при любых х:

Получим выражение для средней по времени мощности колебаний в режиме бегущей волны:

(2.31)

Мгновенные значения напряжения и тока в линии

Подставив эти выражения в (2.31), получим

.

Режим стоячих волн.

Допустим, в линии имеется отраженная волна, амплитуда которой равна амплитуде падающей волны

В этом случае напряжение в линии

После некоторых преобразований получим

(2.32)

Как видим, в этом случае колебания напряжения в линии происходят синфазно, независимо от координаты х. Амплитуда колебаний изменяется вдоль линии по закону косинуса (рис.2.10)

где

- длина волны в линии.

Можно получить аналогичные выражения для тока в линии

или

(2.33)

Амплитуда колебаний тока также меняется в зависимости от х (рис.2.10).

Распределение амплитуд U и I о линии изображено на рис. 2.10

Нетрудно заметить, что имеются ечения в линии, где амплитуда колебаний максимальна, она в 2 раз больше амплитуды источника. Эти сечения называются пучностями. В других сечениях колебания отсутствуют, это - узлы. Пучности (а также узлы) отстают друг от друга на расстояние , равное

, где
-длина волны в линии.