Если в линии распространяется ТЕМ-волна, то фазовая скорость равна скорости света в среде v. Поскольку
скорость света в вакууме, то
где
где
В случае распространения волн Em и Hm - типа
Из соотношений (2.13) и (2.14) следует, что
2.6 Затухающие электромагнитные поля
Если к линии подключен источник, генерирующий колебания, частота которых меньше критической, определяемой формулой (2.6), то система уравнений (2.1) имеет следующее решение (см. приложение 5):
где
- действительное число,
Из (2.15) видно, что амплитуда колебаний, возбуждаемых в линии в точке z=0, уменьшается с ростом z, причем быстрота затухания тем больше, чем сильнее отличаются f от fкр. При любых z колебания синфазны, т.е. отсутствует движение волны.
Как следует из (2.15) колебания H(t) и E(t) происходят с фазовым сдвигом, равным 90
2.7 Радиоволны в прямоугольном волноводе
Прямоугольный волновод (рис.2.5) - широко используемая линия передачи, обладающая наименьшими потерями энергии, по сравнению с другими типами линий.
Поперечным сечением волновода является прямоугольник, широкая сторона которого равна а, узкая-b.
Для нахождения электромагнитного поля внутри волновода следует решить уравнения Максвелла с граничными условиями
где
- поперечно-электрические или ТЕ-типа (Н-тип),
- поперечно-магнитные или ТМ-типа (Е-тип).
Поле Н-типа имеют составляющие Ех, Еу, Нх, Ну, Нz, а поле Е-типа – Ех, Еу, Еz, Нх, Ну.
Радиоволны Н-типа
Поперечно-электрические поля имеют следующие составляющие:
Как видим, поле имеет вид бегущей волны при
В волноводе может распространяться бесконечное число волн Hmn, соответствующих разным значениям m и n. Для того чтобы расширить диапазон пропускаемых частот, следует, по возможности, уменьшить критическую частоту
Как следует из выражений для составляющих поля, не существует волны Н00. Простейшими типами колебаний являются Н10 и Н01. Так как a>b, то из (2.18) следует, что наименьшая критическая частота у волн Н10. Именно она, главным образом, используется на практике.
Волна Н10
Подставим в (2.16) m=1, n=0, получим
где
Поскольку
где
Длина волны в волноводе определяется соотношением (2.14), справедливым для волн Н- и Е-типа.
На рис.2.6 приведено распределение линий напряженности Е и Н в случае возбуждения волн Н10.
2.8 Волны ТЕМ-типа
|
На рис.2.7 изображены распределения электрических и магнитных линий в линиях с ТЕМ-волнами, справедливые для некоторого момента времени.
Помимо главной особенности таких ТЕМ-волн - отсутствие граничной частоты, эти волны имеют следующие свойства.
Фазовая скорость не зависит от частоты колебаний и равна скорости света в среде
где с- скорость света в вакууме. Для немагнитных сред (где
В микрополосковой линии среда неоднородна по сечению, поэтому в (2.19) нужно подставить некоторую эффективную относительную диэлектрическую проницаемость
Длина волны в линии не зависит от частоты колебаний f:
где
Поскольку структура поля в линии такая же. как и при протекании постоянного тока, а статическое электрическое поле потенциально, то и для переменных полей можно использовать понятие потенциала
Вектор плотности тока
2.9 Телеграфные уравнения
Получим соотношение между напряжением U и током I в линии передачи с ТЕМ-волной, которые позволят анализировать распространение электромагнитной волны в линии, не решая уравнения Максвелла. С этой целью рассмотрим небольшой отрезок коаксиальной линии длинной