Ближнюю зону иначе называют зоной индукции.
Дальняя зона
При достаточно больших расстояниях от антенны, где
( ) не учитывать сомножитель в выражениях для , и нельзя. Пренебрегая малыми членами в скобках выражений (2.1), получим , , .Мгновенные значения напряженностей H и E:
, ,(3.2)где
, – амплитуды колебаний напряженностей поля.Как видим, векторы
и перпендикулярны в пространстве и их значения колеблются синфазно во времени. Из (3.2) следует, что выражения для H и E представляют собой волны, бегущие вдоль оси r.Среднее значение вектора Пойнтинга в дальней зоне
(3.3)В радиосистемах прием электромагнитных колебаний происходит на расстояниях, существенно больших длины волны, т.е. в дальней зоне.
Особенности дальней зоны
1.Напряженности H и E колеблются синфазно, их амплитуды уменьшаются обратно пропорционально расстоянию r;
2.Плотность мощность электромагнитного поля определяется квадратом амплитуды тока генератора Im, растет с увеличением отношения длины вибратора l к длине излучаемой волны λ и падает обратно пропорционально квадрату расстояния;
4.Излучаемая мощность зависит от угла места θ и максимальна в направлении, перпендикулярном оси вибратора.
Из выражения (2.3) следует, что для эффективного излучения геометрические размеры антенны должны быть соизмеримы с длиной волны. Этот вывод справедлив для всех антенн.
3.3 Диаграмма направленности антенны
Как видно из (3.1) и (3.3), комплексные амплитуды и плотность мощности электромагнитного поля, излучаемого диполем Герца, зависят от угла места θ. Для других антенн эти величины зависят и от азимутального угла φ В общем случае от θ и φ зависят амплитуды и фазы
и . Поскольку H и E жестко связаны, обычно используют зависимость .Зависимость амплитуды напряженности электрического поля E в дальней зоне от углов места θ и азимута φ при постоянном расстоянии r называется амплитудной диаграммой направленности. Зависимость фазы комплексной амплитуды
от θ и φ называется фазовой диаграммой направленности.Зависимость E от θ для диполя Герца определяется множителем sinθ, поэтому диаграмма направленности имеет вид баранки (тороид вращения) – рис. 3.5
Диаграмму направленности изображают в полярных или декартовых координатах в 2-х плоскостях:
- в плоскости φ = const – рис. 3.6, а;
- в плоскости θ = const - рис. 3.6, б.
Другим простейшим излучателем является круглая проволочная рамка радиуса a, по которой протекает переменный ток I(t). Допустим, ток меняется во времени по гармоническому закону, т.е.
.Если рамка расположена в горизонтальной плоскости, как показано на рис. 3.7, то решение уравнения Максвелла дает существование 3-х проекций векторов напряженностей поля:
, и . Значения комплексных амплитуд соответствуют выражениям (3.1) для , , , полученным для диполя Герца, причем = - , = , = .В дальней зоне векторы
, и ориентированы в пространстве так, как показано на рис. 3.7Максимум излучения оказывается в горизонтальной плоскости, т.е. в плоскости рамки. Таким образом, диаграмма направленности рамочной антенны такая же, как и у диполя Герца, только векторы
и поменялись местами.3.5 Излучение плоскости
Предположим, что имеется плоская поверхность в виде прямоугольника со сторонами a и b, по которой равномерно распределены векторы
и , как показано на рис.3.8.Нормированная диаграмма направленности такого излучающего элемента в двух взаимно перпендикулярны плоскостях при φ = 0 и φ = π/2 имеет следующий вид []:
,(3.4)где
отношение амплитуды напряженности электрического поля к максимальной амплитуде, соответствующей углу места θ = 0; l = a для плоскости φ = 0 (т.е.x0z) и l = b для плоскости φ = π/2 (т.е.y0z ). Графики функции
, построенные для 2-х значений , приведены на рис. 3.9Как видим, диаграмма направленности имеет вид лепестка, причем максимум излучения направлен перпендикулярно излучающей плоскости. Если размер плоскости увеличен, то главный лепесток сужается и появляются боковые лепестки, создающие излучения в других направлениях.
Появление максимумов и минимумов в диаграмме направленности объясняется усиливающей и ослабляющей интерференцией полей, созданных отдельными участками излучающей поверхности. Ширину главного лепестка оценивают величиной 2θ0, где θ0 - минимальный угол, при котором
, либо величиной 2θ-3дБ, где θ-3дБ - угол, при котором падает на 3 дБ по сравнению с максимальный значением.Из (3.4) и рис.3.9 следует, что для создания узконаправленных диаграмм нужно увеличивать линейные размеры антенны l с тем, чтобы выполнялось соотношение l>>λ.
3.6 Типы антенн
Существуют передающие антенны, предназначенные для излучения радиоволн, и приемные антенны, служащие для их приема. Антенны – устройства взаимные, их можно использовать и для излучения, и для приема.