Обозначим через
Так как поток сообщений пуассоновский, то имеем:
Изучая поведение КЛВС во вложенные Марковские моменты, получим следующую процедуру определения стационарных вероятностей сети.
Теорема. Стационарные вероятности рассматриваемой КЛВС вычисляются из соотношений:
P(
где А -
a(
а также вероятность перехода равна нулю, если:
1)
2)
Доказательство:
P(
Вследствие периодичности цепи Маркова
Р(J)=P(J-1)
J определяет те, станции на которых находятся маркеры в данном периодическом классе, с учетом постановки математической модели любой маркер может переходить только на соседнюю станцию. Это и обуславливает то, что маркер с N-ной станции переходит на первую АС.
Таким образом, учитывая условие нормировки, имеем процедуру (1) определения векторов стационарных вероятностей КЛВС.
Доказано.
Для обоснования правильности формул времени необходимо учитывать следующие положения:
1) если поступает сообщение, а соответствующий буфер занят полностью, то сообщение теряется, и при подсчете поступивших сообщений оно не учитывается;
2) если сообщение не передается, то из данного буфера оно никуда не может исчезнуть, поэтому если при переходе из некоторого состояния в соседнее какое-то сообщение теряется, то вероятность данного перехода равна 0;
3) при передаче сообщения из АС, на которой есть маркер, буфер данной станции блокируется;
4) со станции с маркером может передаваться не более одного сообщения.
5) на тех станциях, на которых нет маркеров, может быть вероятность равна единице в том случае, если в i-том периодическом классе и в (i+1) – вом буфер станции был полностью занят.
2.2
Будем рассматривать поведение КЛВС в моменты поступления маркеров на АС. В этом случае изменение состояний КЛВС образуют конечную цепь Маркова.
Под состоянием КЛВС будем понимать состояние всех АС кольца в момент поступления на них маркеров. Каждая АС может находиться всегда в одном из
Все состояния КЛВС делятся на 3 периодических классов, каждый из которых содержит в рассматриваемом случае 12 состояний.
Особенности протокола приводят к тому, что указанная цепь Маркова является неприводимой, периодической с периодом, равным 3.
Некоторый j-тый класс (j
Закодируем состояния КЛВС парами чисел (i, r), i=(
Введем обозначение M=(
Обозначим через
Так как поток сообщений пуассоновский, то имеем:
Изучая поведение КЛВС во вложенные Марковские моменты, получим следующую процедуру определения стационарных вероятностей сети, которая является частным случаем теоремы из пункта 2.1: стационарные вероятности рассматриваемой КЛВС вычисляются из соотношений: