Время перехода свободного маркера между соседними АС будем считать одинаковым для всех станций и равно d. Скорость движения сообщения по кольцу такая же, как и скорость движения свободного маркера. Время, необходимое для передачи и приема сообщения в кольце, обозначим через a.
Интервал времени между последовательными приходами маркеров на станции равен либо D=d+aпри наличии хотя бы одного сообщения для передачи на АС кольца, либо d, если ни на одной АС нет ни одного сообщения для передачи.
После того, как АС-адресат приняла сообщение, квитанция о приеме передается по кольцу на АС-отправитель этого сообщения. При получении квитанции о приеме АС-отправитель освобождается от переданного сообщения, отправляет маркер на очередную АС.
1.2 Математическая модель функционирования многомаркерной, несимметричной КЛВС с буферами , с 3 АС и 2-мя маркерами, с ординарной дисциплиной обслуживания
Рассмотрим несимметричную КЛВС с протоколом маркерного доступа, которая состоит из 3 абонентских станций, на i-тую АС поступает простейший поток сообщений интенсивности
На первой АС имеется буфер емкостью
Буфер на i-той станции назовем полностью свободным, если на АС нет сообщений для передачи и полностью занятым, если на АС имеется
Если свободный маркер поступает на свободную АС (не содержащую ни одного сообщения), то он немедленно отправляется на очередную АС. Если маркер поступает на АС, где имеется хотя бы одно сообщение, то немедленно начинается передача имеющихся сообщений в соответствии с дисциплиной обслуживания.
Дисциплина обслуживания – ординарная, т.е. при поступлении маркера на АС обслуживается не более одного сообщения, стоящего в очереди в момент прихода маркера.
Будем считать, что во время передачи сообщения все поступающие на эту АС сообщения, подлежащие передаче, теряются. Т.е. в этом случае на АС, с которой передаются сообщения, происходит блокировка буфера, в котором находились сообщения в момент прихода маркера. Время блокировки равно времени передачи сообщения, находившихся на АС-отправителе в момент прихода маркера.
Время перехода свободного маркера между соседними АС будем считать одинаковым для всех станций и равно d. Скорость движения сообщения по кольцу такая же, как и скорость движения свободного маркера. Время, необходимое для передачи и приема сообщения в кольце, обозначим через a.
Интервал времени между последовательными приходами маркеров на станции равен либо D=d+aпри наличии хотя бы одного сообщения для передачи на АС кольца, либо d, если ни на одной АС нет ни одного сообщения для передачи.
После того, как АС-адресат приняла сообщение, квитанция о приеме передается по кольцу на АС-отправитель этого сообщения. При получении квитанции о приеме АС-отправитель освобождается от переданного сообщения, отправляет маркер на очередную АС.
1.3 Математическая модель функционирования многомаркерной, несимметричной КЛВС с N АС, с k маркерами (k=N) и буферами различной емкости
Рассмотрим несимметричную КЛВС с протоколом маркерного доступа, которая состоит из N абонентских станций, на i-тую АС поступает простейший поток сообщений интенсивности
На каждой АС имеется буфер с емкостью
Буфер на i-той станции назовем полностью свободным, если на АС нет сообщений для передачи и полностью занятым, если на АС имеется
Если свободный маркер поступает на свободную АС (не содержащую ни одного сообщения), то он немедленно отправляется на очередную АС. Если маркер поступает на АС, где имеется хотя бы одно сообщение, то немедленно начинается передача имеющихся сообщений в соответствии с дисциплиной обслуживания.
Дисциплина обслуживания – ординарная, т.е. при поступлении маркера на АС обслуживается не более одного сообщения, стоящего в очереди в момент прихода маркера.
Будем считать, что во время передачи сообщения все поступающие на эту АС сообщения, подлежащие передаче, теряются. Т.е. в этом случае на АС, с которой передаются сообщения, происходит блокировка буфера, в котором находились сообщения в момент прихода маркера. Время блокировки равно времени передачи сообщения, находившихся на АС-отправителе в момент прихода маркера.
Время перехода свободного маркера между соседними АС будем считать одинаковым для всех станций и равно d. Скорость движения сообщения по кольцу такая же, как и скорость движения свободного маркера. Время, необходимое для передачи и приема сообщения в кольце, обозначим через a.
Интервал времени между последовательными приходами маркеров на станции равен либо D=d+aпри наличии хотя бы одного сообщения для передачи на АС кольца, либо d, если ни на одной АС нет ни одного сообщения для передачи.
После того, как АС-адресат приняла сообщение, квитанция о приеме передается по кольцу на АС-отправитель этого сообщения. При получении квитанции о приеме АС-отправитель освобождается от переданного сообщения, отправляет маркер на очередную АС.
Данная модель интересна тем, что любая станция может передавать сообщение (если оно имеется). Это объясняется тем, что количество маркеров совпадает с количеством станций. Это модель имеет также особенности и в виде матрицы переходов из одного периодического класса в другой.
2. Определение стационарных вероятностей состояний несимметричных, многомаркерных КЛВС
2.1 Определение стационарных вероятностей состояний многомаркерной, несимметричной КЛВС с буферами различной емкости, с N АС и k маркерами, с ординарной дисциплиной обслуживания
Будем рассматривать поведение КЛВС в моменты поступления маркеров на АС. В этом случае изменение состояний КЛВС образуют конечную цепь Маркова.
Под состоянием КЛВС будем понимать состояние всех АС кольца в момент поступления на них маркеров. Каждая АС может находиться всегда в одном из
Все состояния КЛВС делятся на N периодических классов, каждый из которых содержит в рассматриваемом случае
Особенности протокола приводят к тому, что указанная цепь Маркова является неприводимой, периодической с периодом, равным N.
Некоторый j-тый класс (j
Закодируем состояния КЛВС парами чисел (i, r), i=(
Введем обозначение M=(