Нейроинтеллект - это модель реальной сети нейронов, представляющая собой иерархически организованное параллельное соединение простых адаптивных элементов, взаимодействующих с объектами внешнего мира аналогично тому, как это имеет место в биологических объектах. Основные особенности нейрокомпьютеров заключаются в их способности к самоорганизации и обучению на примерах (самопрограммирование и самоорганизация). Наиболее перспективной областью применения является робототехника - создание роботов с элементами искусственного интеллекта. Для создания нейрокомпьютера необходимо решить вопрос об отдельных элементах, топологии связей между элементами и правилах изменения весов связей между элементами.
В качестве отдельных элементов нейрокомпьютера были представлены: предетекторы, детекторы новизны и тождества, модуляторы, мнемонические элементы, семантические элементы и командные нейроподобные элементы.
Основные принципы топологии связей между элементами определяются принципом кодирования, основаннoм на том, что отдельным значениям параметра кодируемого сигнала ставятся в соответствие определенные меченые линии. Правило изменения весов связей определяется принципом Хебба, гласящим, что синоптические контакты, задействованным непосредственно перед разрывом нейрона, повышают свою эффективность. Синапсы, задействованные, но не сопровождаемые разрядом нейрона ее снижают.
Бортовые ЭВМ таких роботов должны воспринимать большие объемы информации, поступающей от многих параллельно функционирующих датчиков, эффективно обрабатывать эту информацию и формировать управляющие воздействия на исполнительные системы в реальном масштабе времени. Более того, управляющие компьютеры интеллектуальных роботов должны оперативно решать задачи распознавания образов, самообучения, самооптимизации, самопрограммирования, т. е. те задачи, которые весьма сложны для традиционных ЭВМ и суперЭВМ. Поэтому остается актуальной необходимость в поиске новых подходов к построению высокопроизводительных ЭВМ нетрадиционной архитектуры. Среди таких подходов центральное место занимает нейрокомпьютерный подход.
Его суть состоит в разработке принципов построения новых мозгоподобных архитектур сверхпроизводительных вычислительных систем – нейрокомпьютеров. Подобно мозгу, такие системы должны обладать глобальным параллелизмом, самообучением, самооптимизацией, самопрограммированием и другими свойствами биологических систем. Ожидается, что нейрокомпьютеры в принципе смогут решить многие из тех проблем, которые сдерживают дальнейшее развитие научнотехнического прогресса.
По современным представлениям нейрокомпьютер (НК) – это система, предназначенная для организации нейровычислений путем воспроизведения информационных процессов, протекающих в нейронных сетях мозга. Структурной единицей НК служит специфический процессор – нейропроцессор (НП), имитирующий информационное функционирование отдельных нервных клеток – нейронов. Нейропроцессоры связываются друг с другом в нейроподобные структуры, имитирующие нейронные сети мозга. По этой причине, чем точнее НП воспроизводит информационную деятельность нервных клеток, и чем ближе конфигурации искусственных нейронных сетей к конфигурациям сетей естественных, тем больше шансов воспроизвести в НК самообучение, самопрограммирование и другие свойства живых систем.
С точки зрения вычислительной техники, каждый нейропроцессор представляет собой специализированное процессорное устройство, реализуемое программным, аппаратным или программно-аппаратным способом. В то же время это устройство имеет ряд особенностей. Во-первых, НП воспроизводит не произвольно выбранный набор операций, а только те операции, которые биологически обусловлены и необходимы для описания процессов переработки информации в нервных клетках. Во-вторых, при аппаратной реализации нейропроцессоров они, подобно нейронам мозга, связываются друг с другом индивидуальными линиями передач последовательных кодов. При большом числе процессорных элементов такая связь более эффективна, чем связь нейропроцессоров по общей шине или посредством индивидуальных параллельных шин.
Эти и другие особенности НП позволяют выделить их в самостоятельный класс процессорных устройств вычислительной техники.
Глава III Основы теории нейроподобных сетей.
Что позволяет человеку анализировать поступающую информацию? В терминологии нейрогенетики введено ключевое понятие – нейросеть. Именно совокупность нейросетей образует отделы нервной системы человека, которые в свою очередь определяют всю деятельность, придают существу разум, интеллект.
Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать. Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.
Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации.
Ниже приводятся некоторые сведения об устройстве и работе нервной системы, которые используются при построении моделей нейронных сетей.
Нервные клетки, или нейроны, представляют собой особый вид клеток в живых организмах, обладающих электрической активностью, основное назначение которых заключается в оперативном управлении организмом. Схематическое изображение нейрона приведено на рисунке 1.
Рисунок 1. Схема строения нейрона
Нейрон имеет тело (сому) – 1, дерево входов (дендриты) – 4 и выходов (аксон и его окончания) – 2. Сома, как правило, имеет поперечный размер в несколько десятков микрон. Длина дендритов может достигать 1 мм, дендриты сильно ветвятся, пронизывая сравнительно большое пространство в окрестности нейрона. Длина аксона может достигать сотен миллиметров. Начальный сегмент аксона – 3, прилегающий к телу клетки, утолщен. Иногда этот сегмент называют аксонным холмиком. По мере удаления от клетки он постепенно сужается и на расстоянии нескольких десятков микрон на нем появляется миэлиновая оболочка, имеющая высокое электрическое сопротивление. На соме и на дендритах располагаются окончания (коллатерали) аксонов, идущих от других нервных клеток. Каждое такое окончание имеет вид утолщения, называемого синаптической бляшкой, или синапсом. Поперечные размеры синапса, как правило, не превышают нескольких микрон, чаще всего эти размеры составляют около 1 мкм.
Входные сигналы дендритного дерева (постсинаптические потенциалы[2]) взвешиваются и суммируются на пути к аксонному холмику, где генерируется выходной импульс (спайк) или группа импульсов. Его наличие (или интенсивность), следовательно, является функцией взвешенной суммы входных сигналов. Выходной сигнал проходит по ветвям аксона и достигает синапсов, которые соединяют аксоны с дендритными деревьями других нейронов. Через синапсы сигнал трансформируется в новый входной сигнал для смежных нейронов. Этот входной сигнал может быть положительным и отрицательным (возбуждающим или тормозящим) в зависимости от вида синапсов. Величина входного сигнала, генерируемого синапсом, может быть различной даже при одинаковой величине сигнала, приходящего в синапс. Эти различия определяются эффективностью или весом синапса. Синаптический вес может изменяться в процессе функционирования синапса. Многие ученые считают такое изменение нейрофизиологическим коррелятом (следом) памяти. При этом роль механизмов молекулярной памяти заключается в долговременном закреплении этих следов.
Нейроны можно разбить на три большие группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические в ушной улитке или обонятельные в хеморецепторах носа), в электрическую импульсацию своих аксонов. Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. На конце их аксонов имеются специальные синаптические соединения с исполнительными органами, например мышцами, где возбуждение нейронов трансформируется в сокращения мышц. Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и формируют управляющие сигналы для эффекторов. Они образуют центральную нервную систему.
3.3. Нейроподобный элемент.
На нейроподобный элемент поступает набор входных сигналов x1...хn (или входной вектор
), представляющий собой выходные сигналы других нейроподобных элементов. Этот входной вектор соответствует сигналам, поступающим в синапсы[3] биологических нейронов. Каждый входной сигнал умножается на соответствующий вес связи w1…wn – аналог эффективности синапса. Вес связи является скалярной величиной, положительной для возбуждающих и отрицательной для тормозящих связей. Взвешенные весами связей входные сигналы поступают на блок суммации, соответствующий телу клетки, где осуществляется их алгебраическая суммация и определяется уровень возбуждения нейроподобного элемента S: